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The response and stability of a rotor system are critically dependent on bearing
characteristics. Problems involving nonlinear characteristics of bearings - both, rolling
element and fluid film, arise quite frequently in rotors (Ragulskis et al, 1974; Harris,
1984; Dimentberg, 1988; Bendat, 1990; Stolarski, 1990; Choy et al, 1992; Childs, 1993;
Soong and Grigoriu, 1993; Lin and Cai, 1995; Zhou and Hashimoto, 1995). It has
become evident in recent years that an important class of rotor bearing phenomenon
cannot be studied without adequately accounting for the nonlinear forces produced by the
bearings. Bearing nonlinearity assumes a greater role for high speed and low weight rotor
applications, where the vibration amplitudes tend to be relatively large. In comparison to
the amount of work done in recent years, in the area of characterisation of linear elastic
parameters of bearings, research in identification and estimation of the nonlinear
parameters has been relatively scarce. This is true for fluid film bearings as well as
rolling element bearings, which, despite their mechanical simplicity, are known to display

highly nonlinear behaviour and present some very complex rotor problems.

Parameter estimation is an inverse problem of determination of the elements of the
system from measures of the forcing function induced upon it and the resultant response.
Inverse problems in nonlinear analysis require techniques with rigorous theoretical base,
which can provide valid routes to parameter estimation. The structure of Volterra series
(Volterra; 1889, 1930, 1959) and Wiener series (Wiener, 1958), which model the
relationship between the system response and the input in terms of a series of first and

higher order convolution integrals, provide analytical platforms which can be utilised for

parameter estimation.
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The present study attempts to employ the kernel form of response representation of
nonlinear systems, developed by Voltenafand Wiener, for estimation of nonlinear
stiffness parameters of rotor-bearing systemjs. These theories have been in engineering
literature for quite some time and have been used by researchers, mainly in electrical
control systems area, for kernel identification and synthesis. However, Volterra and
Wiener theories have been scarcely used in mechanical engineering applications. An
engineering approach is adopted in the present work, whereby these theories have been
utilised beyond first and higher order kernel identification, to the problem of estimation

of both lincar and nonlinear stiffness parameters of rotor-bearing systems.

The Volterra series, recognised as a powerful tool for nonlinear analysis of systems
(Billings, 1980; Rugh, 1981; Korenburg and Hunter, 1990), employs multidimensional
kernels, which upon convolution with the applied excitation, express the response in the
form of a power series. The kernels of the system are understood as multi-dimensional
unit impulse response functions. Two- basic difficulties associated with practical
application of Volterra series are the convergence of the series and measurement of
Volterra kernels of the given system. Their measurement is possible only if the
contributions of cach of the system’s Volferra operators can be separated from the total
response. These difficulties are circumvented in the Wiener theory. Wiener functionals
are formed by a set of orthogonal functionals from the Volterra functionals for an input,
which is a white Gaussian time function. The Wiener kernels can be determined through
cross-correlation techniques, which can be carried out in time domain or the frequency
domain. Reference can be made to the works of Lee and Schetzen (1965), Harris and
Lapidus (1967), French and Butz (1973), Frentch and Butz (1974), Bedrosian and Rice
(1975). Crum (1975), Gifford and Tomlinson (1989), Bendat (1990, 1998), Bendat and
Piersol (1993), for kernel and higher order FRF measurements. The frequency domain
treatment of Volterra and Wiener series offers an easier computation and more intuitive

interpretation, in comparison to time domain treatment.

i/



A frequency domain methodology has been developed, in the present study, for nonlinear
rotor-bearing systems, whereby the Wiener kernels are estimated from measurements of
the system response and applied white (broad band) excitation. Excitation is applied at
the bearing stations and resultant vibration responses are picked up at the bearings and
other required stations along the rotor. Volterra form of response representation is
employed to synthesise mathematical expressions of the kernels in terms of linear and
nonlincar parameters of the system. The relationships between Volterra and Wiener
kernels of identical order, based on orthogonality conditions, are then employed to obtain

estimates of the system parameters.

The parameter estimation procedure is developed and illustrated for the following rotor
configurations -

(1 rigid rotor in bearings without cross-coupling

(i) rigid rotor in bearings with cross-coupling

(1) flexible rotors

The case of a rigid rotor supported in bearings with negligible cross-coupling effects, as
in the case of ball bearings, has been modeled as a single-degree-of-freedom system. The
analvtical development, though general in form, is done through an assumption of a cubic
type of nonlinearity in the system. An engineering approach is suggested through a third
order response representation of Volterra and Wiener series. Damping is taken as linear.
Using frequency domain analysis, the first to third order kernels are extracted from
measurements of the applied force and response. A third order kemel factor is
synthesised from the first order kernel transform and is processed along with the

measured third order kernel transform for nonlinear stiffness estimation. The procedure is

illustrated through numerical simulation.

The Volterra kernels are obtained from the Wiener kernels for a white Gaussian
excitation. However, in practice, a broad band excitation can be provided and finite
samples of data are used to obtain an estimate of a kernel. Though, the estimates are

expected to differ from the true values, by amounts dependent on the variance of the
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means, formed from the finite samples, errors can be made to diminish by averaging over
more data. The analysis is developed in terms of nondimensional parameters. A
numerical simulation of the response and subsequent parameter estimation is carried out

and errors involved are illustrated for various sets of nondimensional parameters.

A rigid rotor supported in bearings with cross-coupling effects, as in the case of fluid film
bearings, is modeled as a two-degree-of-freedom system. This case is more involved,
since in addition to the set of direct kernels, cross-kernels also need to be defined in this
case, which can be convolved with the applied excitation for response representation in
terms of Volterra and Wiener series. Starting with the equations of motion, Laplace
transforms are employed to derive expressions for the first and higher order direct and
cross-kernels. Again, analytical modeling is carried out for a cubic type of nonlinearity.
Damping is taken as linear and without cross-coupling, in order to keep the model simple.
The first and third order kernels are extracted from the force and response measurements.
Third order direct and cross-kernel factors are synthesised from the measured first order
kernel transforms. These are subsequently processed with the measured third order kernel
transforms for parameter estimation. The procedure is illustrated through numerical
simulation. for various sets of mondimensional parameters and the effect of

approximations and errors involved are discussed.

The procedure has been further developed to incorporate the influence of shaft flexibility.
Influence coefticient concepts are employed to obtain shaft stiffness for the analysis. In
order to reduce algebraic complexities, the shaft stiffness is assumed to be linear and only
the hearing nonlinearity has been included. The analysis has been carried out in matrix
form. to the extent possible, in order to retain the generality of approach. The parameter

estimation procedure is numerically illustrated for a set of nondimensional parameters.

The application aspects of the procedure are studied through experimental investigations
on a laboratory rotor rig. The experimental work has been restricted to a simple
configuration. a rotor supported in ball bearings, which is treated as a single-degree-of-

freedom system. The excitation mechanism, instrumentation and the results obtained are



discussed. The estimates of the parameters are compared with those obtained from a
previous study based on Markov process approach. The results are also validated through
an independent check, which employs Hertzian contact theory for obtaining stiffness

estimates of bearings in isolation of the shaft.

To summarize, linear and non-linear bearing stiffness estimation procedures have been
developed for cases of rigid rotors in bearings with and without cross-coupling and
flexible rotors. The procedures are based on the theoretical foundations of the kernel form
of nonlinear response representation of the Volterra and Wiener series. The procedures,
though analytically developed for cubic type nonlinearity, have a general form and can be
employed for estimation of a general polynomial form of nonlinearity. The procedures
arc also applicable to multi-degree freedom systems. The algorithms are illustrated
through numerical simulation and experiments on a laboratory rotor-bearing test rig. The

results and errors involved due to various engineering approximations are discussed.
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CHAPTER 1

INTRODUCTION

Dynamic characterization of bearings constitutes a major area in rotordynamic studies.
The response and stability of a rotor system are critically dependent on bearing
characteristics. It has become evident in recent years, that an important class of rotor
bearing phenomenon cannot be studied without adequately accounting for the nonlinear
forces produced by the bearings. Bearing nonlinearity assumes a greater role for high
speed and low weight rotor applications, where vibration amplitudes tend to be relatively

large.

While considerable amount of work has been done in recent years in estimation of linear
elastic parameters of bearings, research in identification and estimation of the nonlinear
parameters has been relatively scarce. This is true for fluid film bearings as well as rolling
element bearings, which despite their mechanical simplicity, are known to display highly
nonlinear behaviour and present some very complex rotor problems. The approximations,
thus involved in the dynamic characterisation of bearings are responsible for some of the
unreliability in prediction of the response and stability of a rotor system. Parameter
estimation is an inverse problem of determination of the elements of the system from
measures of the forcing functions induced upon it and the resultant response. Estimation
of linear parameters of rotor-bearing systems has been mostly carried out within the
framework of classical dynamics, where closed form solutions are generally available to
model the system response. Work in nonlinear parameter estimation has been

handicapped, due to absence of such general models to exactly represent the system

response.

The present study attempts to employ the kernel form of response representation of
nonlinear systems, developed by Volterra and Wiener, for estimation of nonlinear

stiffness parameters of rotor-bearing systems. These theories have been in engineering



literature for quite some time and used by researchers, mainly in electrical control
systems area, for kernel identification and synthesis. However, they have been scarcely
used in mechanical engineering applications. An engineering approach is adopted in the
present work, whereby these theories have been utilised beyond first and higher order
kernel identification to the problem of estimation of both linear and nonlinear stiffness

parameters of rotor-bearing systems.

The structure of Volterra and Wiener series offers a rigorous theoretical platform for
analysis of the response of a nonlinear system for parameter estimation. The Volterra
series models the relationship between the system response and input by a series of first
and higher order convolution integrals. The convolution is carried out between the
applied excitation and the kemels of the system. The kernels of the system are understood
as multi-dimensional unit impulse response functions. The response can be represented as
a series of linear, bilinear, trilinear terms and so on. Two basic difficulties associated with
the practical application of the Volterra series are the convergence of the series and the
measurement of the Volterra kemels of the given system. Their measurement is possible
only if the contributions of each of the system’s Volterra operators can be separated from
the total response. These difficulties are circumvented in the Wiener theory. Wiener
functionals are formed by a set of orthogonal functionals from the Volterra functionals,
for an input which is a white Gaussian time function. The Wiener kemnels can be
determined through cross-correlation techniques. This determination can be carried out in

the time domain or frequency domain.

A general procedure has been developed in the present study, whereby the Wiener kernels
are estimated from measurements of the system response and applied white (broad band)
excitation. Volterra form of response representation is employed to synthesise
mathematical expressions of the kernels in terms of the linear and nonlinear parameters of
the system. Relationships between Volterra and Wiener kernels of identical order, based
on orthogonality conditions, are then employed to obtain estimates of the system

parameters. A frequency domain approach is adopted for analysis.



The problem is initially attempted for a rigid rotor supported in bearings with negligible
cross-coupling effects, as in the case of ball bearings. Such a rotor-bearing configuration
is modeled as a single-degree-of-freedom system. The analytical development, though
general in form, is done through an assumption of a cubic type of stiffness nonlinearity in
the system. An engineering approach is suggested using é. third order response
representation of Volterra and Wiener series. Damping is taken as linear. Using frequency
domain analysis, the first and third order kemels are extracted from measurements of the
applied force and response. A third order kemnel factor is synthesised from the first order
measured kernel transforms and is processed along with the measured third order kernel
transform for nonlinear stiffness estimation. The procedure is illustrated through
numerical simulation. Volterra kemels are developed from the Wiener kernels for a white
Gaussian excitation. However, in practice, a broad band excitation can be provided and
finite samples of data can be used to obtain an estimate of a kernel. Though, the estimates
are expected to differ from the true values, by amounts dependent on the variance of
means formed from the finite samples, errors can be made to diminish by averaging over
more number of samples. The analysis is done in terms of nondimensional parameters
and numerical simulation of the response is carried out. Subsequent parameter estimation

and the errors involved are illustrated for various sets of nondimensional parameters.

The procedure is developed further for treatment of a rigid rotor supported in bearings
with cross-coupling effects, as in the case of fluid film bearings. This case is more
involved and is modeled as a two-degree-of-freedom system. In addition to the set of
direct kernels, such a system needs cross-kernels to be defined, which can be convolved
with the applied excitation for response representation in terms of Volterra and Wiener
series. Starting with the equations of motion, Laplace transforms are employed to derive
expressions for the first and higher order direct and cross-kernel transforms. Analytical
modeling is carried out for a cubic type of nonlinearity. Damping is taken as linear and
without cross-coupling, for simplicity. The first and third order kernels are extracted from
force and response measurements. Third order direct and cross-kemel factors are

synthesised from the measured first order kernel transforms. These are subsequently



processed with the measured third order kernel transforms for parameter estimation. The
procedure is illustrated through numerical simulation, for various sets of nondimensional

terms and the approximations and errors involved are discussed.

The case of parameter estimation in flexible rotors is considered next. In the cases
mentioned above, the rotor shaft is taken as rigid. The treatment has been further
extended to incorporate the influence of shaft flexibility. Influence coefficient concepts
are employed to incorporate shaft flexibility. In order to reduce algebraic complexities,
shaft stiffness is assumed to be linear and only the bearing nonlinearity has been
incorporated. Analysis has been carried out in matrix form to the extent possible, in order
to retain the generality of the approach. Parameter estimation procedure is developed
along the route described in the previous cases. Numerical illustration is carried out for a

set of nondimensional parameters.

Experimental investigations have been carried out on a laboratory rotor rig, to further
study the application aspects of the procedures developed. The experimental work has
been restricted to a simple configuration of a rotor supported in ball bearings, which is
treated as a single-degree-of-freedom system. The excitation mechanism, instrumentation
and results obtained are discussed. Estimates of the parameters are compared with those
obtained from a previous study based on the Markov process approach. The results are
also validated through an independent check, which employs Hertzian contact theory for

obtaining stiffness estimates of bearings in isolation of the shaft.



CHAPTER 2

LITERATURE REVIEW

Analysis of the response of non-linear systems subjected to random excitation have
attracted considerable attention in the recent past,‘mainly due to growing awareness of
the significance of the random nature of forces produced by a number of physical
phenomena like Wind,’ sea waves, earthquakes etc., which must be considered in limit
design of aircrafts, buildings, off-shore structures, ships etc. The present study, deals with
the inverse problem of the estimation of system parameters from a knowledge of the
applied force and the resultant system response. Inverse problems in nonlinear analysis
require techniques with rigorous theoretical base, which can provide valid routes to
parameter estimation. Volterra series (Volterra; 1889, 1930, 1959), provides a basis for
these requirements. It has, by now, been well established as a powerful tool in the
analysis of nonlinear systems (Billings, 1980; Rugh, 1981; Korenburg and Hunter, 1990).
The theory of Volterra series involves modeling the relationship between system
response and input force in terms of a series of first and higher order convolution
integrals. Wiener series (Wiener, 1958) circumvents the problems associated with
Volterra series, i.e. convergence of the series and measurement of individual kernels. The
Wiener series is formed by an orthogonal set of functionals from the Volterra series for a
white Gaussian input. Such white noise analysis is considered to be an effective method

for gaining a maximum of information with a minimum number of assumptions about the

system.

Volterra and Wiener approaches are adopted, in the present work, for linear and nonlinear
parameter estimation of rotor-bearing systems. Problems involving nonlinear vibrations
arise quite frequently in rotordynamics, especially those caused through random
vibrations of bearings - both, rolling element and fluid film, excited by random loads
(Ragulskis et al., 1974; Harris, 1984; Dimentberg, 1988; Bendat, 1990; Stolarski, 1990,
Choy et al., 1992; Childs, 1993; Soong and Grigoriu, 1993; Lin and Cai, 1995; Zhou and

Hashimoto, 1995). In some cases, deterministic models prove to be inadequate or at least,



extremely complex and the phenomenon can be adequately described only within the
framework of statistical models. Statistical dynamics, concerned with the study of various
random phenomena in dynamic systems, enriches the classical basic theory of oscillations

and extends the possibilities for its applications.

A review, of the various approaches to analysis of nonlinear random vibrations, followed
by a discussion on the ongoing research on dynamic characterization of rotor bearings, is

presented here.

2.1 VOLTERRA AND WIENER SERIES

Volterra series has been in engineering literature for quite some time now. However,
there have been few attempts towards its application to mechanical systems. Volterra
series represents the response of a system in a functional form, through a series of first
and higher order convolution integrals, involving explicit operations on the input to the
system. The alternative form of Volterra series is the operator form. In the functional
form, the emphasis is on the output at a specific time instant, for a given input function,
while in operator form the focus of attention is the complete output function. The
response is represented as a series of linear, bilinear, trilinear terms and so on. A linear
operator is one for which the response t0 a linear combination of signals is same as the
linear combination of the response to each individual signal. The functional form of the
linear operator is a first order integral involving convolution between the first order
kernel and input. The first order kernel is a unit impulse response function. The second
order operator is one for which the response to a linear combination of signals is a
bilincar operation on individual input signals. The functional representation of the
bilinear operator is a two dimensional integral involving convolution of a second order
kernel with the input. The second order kernel can be interpreted as a two dimensional
impulse response. The trilinear and higher operators are similar extensions to higher
dimensions. There have been many articles devoted to theoretical issues such as existence
of Volterra series (Leon, 1978; Lesiak, 1978; Sandberg, 1982), computation of Volterra
kernels of special systems, composition, feedback configurations, nonlinear circuits etc.

(Brilliant, 1958; Barret, 1963; Flake, 1963; Lubbock, 1969; Chua, 1979, 1979a; Boyd et



al., 1983) and the formal frame work for Volterra series (Halme, 1971; DeFigueiredo,
1980; Sandberg, 1982). Volterra series can be treated in both — the time domain and the
frequency domain. The frequency domain treatment provides a logical and appropriate
way of extending the linear system theory to higher order Frequency Response Functions
(FRFs). The higher order FRFs are calculated using techniques similar to those applied to
linear systems. The obvious advantage of the frequency domain treatment over time
domain treatment is that frequency domain kernels are easier to compute and have an
easier interpretation. Two basic difficulties are associated with practical application of the
Volterra series. The first concerns measurement of the Volterra kernels of the given
system. Measurement is possible only if contributions of each of the system’s Volterra
operators can be separated from the total response. No exact method of isolating an
individual Volterra operator exists, for a system not predefined to be restricted to a finite
order. The second difficulty is that Volterra series representation of a physical system
may converge for only a limited range of the system input amplitude. Volterra series is a
power series with memory, similar to Taylor series, and suffers from the same limitations

as the Taylor series. These difficulties with the Volterra series are circumvented in the

Wiener theory.

Wiener functionals involve forming a set of orthogonal functionals from the Volterra
functionals. These functionals are orthogonal when the input is a white Gaussian time
function. The convergence of an orthogonal series is a convergence in the mean and
Wiener functionals describe a larger class of nonlinear systems (Schetzen, 1980). The
Wiener kernels render themselves to individual determination through means of cross-
correlation. This determination can be carried out in the time domain or the frequency
domain. White Gaussian excitation provides a means of exciting all possible nonlinear
behaviour of a system, within a certain amplitude limit. However, in practice, a broad
band excitation can be provided and finite samples of data can be used to obtain an
estimate of a kernel. Though, the estimates differ from the expected values, by amounts
dependent on the variance of the means formed from finite samples (Fakhouri et al.,

1981), errors can be made to diminish by averaging over more data.



Considerable amount of research has been carried out on various aspects of Volterra and

Wiener series analysis of nonlinear systems. Some of the salient works are discussed

below.

Early studies:

Fretchet (1910) developed a functional series, called as Fretchet-Volterra series, for
representation of a continuous nonlinear system. Wiener (1958) considered the
identification of nonlinear systems by representing each functional term by a Fourier-
Hermite series in conjunction with Laguerre functions. Brilliant (1958) has used the
frequency domain approach in the analysis of various systems composed of cascade,
feedback, inversion, addition, and subtraction of the elements. A number of studies
stemmed from this work, for synthesis of a system to be equated to an unknown system.
Amorocho and Orlob (1961) used the basis functional approach in finding the kernels of
rainfall-runoff process. Jacoby (1966) introduced a decomposition model for hydrologic
systems, A number of calculation methods were developed by later investigators using
direct solution, basis functions, time domain, and frequency domain approaches, a review

of which has been made by Hung and Stark (1977).

”

I'ime domain approach:

Schetzen (1965) presented a method for measuring the Volterra kernels of a finite order
nonlinear system. The kemels are obtained individually as a multi-dimensional impulse
response. Multi-dimensional kemnel transforms can also, be obtained by the method
described. As an extension, a technique of obtaining Volterra kernels from a multi-
dimensional step response was presented. This technique is useful for nonlinear systems
which can be considered to be of a given finite order, for only a limited range of input
amplitudes. In a subsequent paper (1965(a)), he has presented a method for synthesis of
Volterra kernels. Later, Lee and Schetzen (1965) developed a practical and relatively
simple method for measuring Wiener kernels of a nonlinear system. The method is based

upon cross correlation techniques and does not involve orthogonal expansion of basis

functions as in the Wiener method.



Katzenelson and Gould (1962) developed an iterative method for obtaining kernels that
can represent a system. They posed the system equivalently in terms of the solution
needed for an optimum filter. Korenberg (1973) considered identification of differential
systems having a Volterra series expansion, using a slowly exponentially decaying sum
of sinusoids as input. The terms of the differential expansion are determined orthogonally
using linear regression and simple averaging procedures. A method of directly identifying
the Volterra kernels using an exponentially decaying function multiplied by a bounded
zero-mean independent process, was also developed by Korenberg (1973). Identification
is orthogonal, and the kernels are obtained by averaging procedure. Marmarelis and Naka
(1973, a-c) and Watanabe (1975) discussed two input approach to extract kernel
information. Krausz (1975) developed an identification method based on a random
impulse train (Poisson process) rather than white Gaussian input. This method appears to
be especially applicable to study of neuronal interactions, where the input is stimulation
of a nerve axon. Klein and Yasui (1976) proposed the concept of ‘dual-space’ basis
functions, which are then expanded in terms of Volterra kernels and further, related to
Wiener kernels. Fakhouri (1978) developed an algorithm for identification of discrete
Volterra kernels in terms of multidimensional z-transforms using higher order correlation
functions and coloured Gaussian inputs. Fakhouri (1980) and Billings and Fakhouri
(1980) analysed the nonlinear feedback system and developed an identification algorithm
for open and closed loop nonlinear systems based upon pseudorandom excitation, which

provides estimates of the individual component subsystems from measurement of the

input and noise corrupted output.

Frequency domain approach:

After the initial works of Brilliant (1958) and George (1959), a number of studies were
carried out employing the frequency domain approach. Tick (1961) developed a measure
of quadratic coherence, which is used to indicate the amount of quadratic effect on the
output due to input. Barret (1963) introduced the use of functional expansions for
calculation of output when the input is sinusoidal or random. Korenberg (1973)
developed a genéral method for explicit solution of the transfer functions of a random-

stimulus-input cascade system containing a chain of alternating linear and static nonlinear



systems. Brillinger (1970) developed a procedure for an asymptotically unbiased and

asymptotically normal estimation of the jth degree frequency transfer function for

identification of a general unknown system.

French and Butz (1973) developed a general frequency-domain method for calculation of
higher degree Wiener kemels, analogous to the cross correlation method of Lee and
Schetzen (1965) for the time-domain case. They have used complex exponential
functions as a set of orthogonal functions for expanding the kernels. In another work
Frentch and Butz (1974) have developed an algorithm based on expansion of Wiener
kernels in terms of Walsh functions. The nonlinear system is described in terms of a set
of kernels, which contain dyadic convolution operation, and identification is performed
using the fast Walsh-Fourier transform. Crum (1975) presented a simple procedure for
the simultaneous reduction and expansion of multidimensional Laplace-transform

kemnels.

Bedrosian and Rice (1971, 1975) illustrated frequeney domain methods for solution of
some simple nonlinear combination of elements by means of harmonic probing, which
involves simple harmonic functions as inputs and employs direct-expansion method.
Gifford and Tomlinson (1989) illustrated the technique of calculation of higher order
FRIs, for systems with more than one degree of freedom. The technique involving
correlation measurements using random excitation is illustrated by analysis of a nonlinear
beam. They also introduced higher order FRF models of a discrete structural system and
showed how this model can be used as a basis for curve fitting and extracting a

parametric model of multi-degree of freedom nonlinear system.

Nam et al. (1990) have presented a frequency domain approach for digitally estimating
the system parameters, based on input/output measurements, of a nonlinear system which
can be approximately characterised in terms of the first three transfer functions of
Volterra series. As an extension of the work of previous investigators (Tick, 1961; Koh,
1985: Nikias, 1987; Powers, 1987; Kim, 1988), they presented a unified approach for

handling cubic systems with stationary random inputs, by providing a quantitative



measure of power transfer between the system input and output. Odiari and Ewins (1992)
have presented a procedure for identifying the vibration parameters of nonlinear vibratory
systems, with particular emphasis on rotor-stator systems. They have derived the

equations for calculating the Wiener and Volterra kernels in the frequency domain.

Modal techniques (Ewins, 1984) form the basis of most of structural analysis of general
degree of freedom systems. Bendat and Piersol (1982, 1986), have derived equations
based on bispectral analysis techniques for finite memory square law systems. Later,
Bendat (1990, 1998); Bendat and Piersol (1993) derived a range of formulae for finding
the first order, second order and third order FRF’s through spectral analysis. Application
of bispectral analysis methods to quadratic type system has also been reported by
Yamamouchi (1974), for describing ocean wave characteristics and by Choi et al. (1985)
and Vandiver and Jong (1986) for flow induced problems. Rice and Fitzpatric (1988)
have given a generalized method for identification of a large range of nonlinear systems
subjected to random excitations using spectral method in frequency domain. Rice and
Fritzpatic (1991) have also discussed a situation where the modal technique becomes
unsatisfactory and an inversion approach has been adopted. Recently, Worden et al.
(1997) have extended the conventional harmonic probing algorithm of Bedrosian and

Rice (1975) to deal with multi-input multi-output form of Volterra series.

System Characterisation:

There have been two approaches to the system characterization problems. The first
approach is the differential equation method (Eykhoff et al. 1966; Eykhoff, 1974), where
the topology of a system is assumed to be known, so that a set of differential equations
can be used to represent the system. Identification, therefore, reduces to determination of
various parameters in the equations. The second approach (Hung, et al., 1977) is the
integral equation method, where little or no a-priori assumptions are made about the
topology of the system. Instead, the form of integral equations is fixed, and the
identification method reduces to determination of values within the integrals, called
kernels. When the internal structure of a system is known, the differential equation

method is usually preferred to the integral method. Only a few parameters need to be



identified in the set of differential equations, since often only a finite number of kernels
need to be estimated. Another advantage of differential over integral equation approach is
that the former is usually easier to interpret. On the other hand the power of the integral
equation approach lies in its canonical nature (Wiener, 1958). The method can be applied
to a wide class of systems, which are essentially time-invariant and have finite memory.
Ho and Stark (1973) and Watanabe and Stark (1975) carried out interpretation of their
estimated kernels. They have also emphasised the examination of the response dynamics

of the kernel models to transient inputs, such as pulses, steps, and ramps etc.

As mentioned in the introductory part of this chapter, statistical methods have also served
as powerful tools for analysis of stochastic dynamics of nonlinear systems. A brief

discussion of such methods is presented here.

2.2 STATISTICAL METHODS

Statistical Dynamics, concerned with study of various random phenomena in dynamic
systems, extends the possibilities for application of the classical basic theory of
oscillations to situations where deterministic models are inadequate. Recognition of white
noise excitation as an efficient tool for extracting maximum information about the
system, with least number of assumptions has served to underline the significance of such

procedures for parameter estimation.

Markov process approach:

The significance of the Markov process approach in parameter estimation lies in the fact
that exact solutions of a limited class of vibratory systems can be obtained. A process,
whose present probability distribution depends on only one previous time instant, is
called a Markov process. The structure of a Markov process is completely determined,
for all future times, by the distribution at some initial time and by a transition probability
density function, which satisfies a linear partial differential equation known as the
Fokker-Planck-Kolmogorov (Fokker, 1914; Planck, 1917; Kolmogorov, 1931) equation.
The Fokker-Planck equation was derived and exact stationary response was obtained for

certain cases of two-degree-of-freedom non-linear dynamic systems, by Ariaratnam



(1960). The theory was generalized later by Caughey (1963) for multi-degree of freedom
cases. The drift and diffusion coefficients in the FPK equation can be derived from the
nonlinear equations of motion of the dynamic system (Crandall, 1966). A general, closed
form solution to FPK equation is yet to be found. However, the first order probability
distribution for the stationary response distribution is readily obtained for a limited class
of vibratory systems with nonlinear restoring forces and special forms of nonlinear
damping (Fuller, 1969; Caughey, 1971; Caughey and Ma, 1983; Pradlwarter et al., 1991).
Exact stationary solution in terms of probability density function, for a class of non-linear
systems driven by a non-normal-delta-correlated process has been obtained by
Vasta (1995).

For the response to be approximated by a Markov process, it is necessary that the
excitation be approximated by ideal white noise. This restriction can be, in principle,
removed at the price of increasing the complexity of the system, by introducing linear
filters between the ideal white-noise excitations and the system. It can be shown by using
stochastic averaging principles that, under certain conditions, the response of a nonlinear
dynamic system to non-white excitation can be approximated by a Markov process.
Relevant works in this field are by Stratonovitch (1967), Khasminskii (1966),
Papanicolaou and Kohler (1974), Dimentberg (1980), Roberts (1983), Spanos (1983) and

Zhu (1983). These works involve extensive applications to nonlinear random vibration of

mechanical and structural systems.

Perturbation methods:

Perturbation methods are generally employed, when the amount of nonlinearity in a
system is controlled by a small scaling parameter. The solution is sought in terms of a
power series in a small scaling parameter and successive terms are evaluated as linear
responses to nonlinear functions of the preceding terms. This classical approach for
deterministic nonlinear problems (Stoker, 1950) was extended to random vibration
problems by Crandall (1963). In practice, calculations are seldom carried beyond the first
perturbation. Functional series methods offer an alternative approach to developing an

expansion, based on the linear solution. An example of application of this method is the



work of Orabi and Ahmadi (1987). They used a Wiener-Hermite expansion and presented
a formal procedure for deriving the deterministic equations governing kernel functions,

arising in the expansion (Roy and Spanos, 1990).

Method of moments:

A sct of differential equations for various statistical moments, or related quantities known
as cumulants (or semi-invariants) and quasi-moments (Stratonovitch, 1967) of the
response, as function of time, can be obtained by multiplying the FPK equation by
suitable functions and integrating over the probability space. Equivalent sets of equations
can be derived directly from the dynamic equations of motions or the equivalent Ito
equations. Approximate solutions have been proposed, based on ad-hoc closure
assumption (Bolotin, 1979; Ibrahim and Roberts, 1978; Roberts, 1981, Crandall, 1985).

Method of equivalent nonlinear equations:

An alternative generalization of statistical linearization has been proposed by Caughey
(1986). The idea is to replace the original set of nonlinear differential equations by an
equivalent nonlinear set, where the latter belong to a class of problems, which can be
solved exactly. This class is, at present, very limited, and thus the range of applicability
of the technique is correspondingly restricted. Results have been obtained for oscillators
with nonlinearity in damping and stiffness (Caughey, 1986; Cai and Lin, 1988; Zhu and
Yu, 1989). Equivalent statistical quadratization methods have been applied to non-linear
multi-degree-of-freedom systems subjected to random excitation by Spanos and Donley
(1991, 1992). It has been demonstrated that the method is very effective as a means of

predicting the probability distribution of response, with reasonable accuracy.

Method of computer simulation:

ettt

Numerical simulation or the Monte Carlo method (Shinozuka, 1972; Bolotin, 1979;
Spanos, 1981; Rubinstein, 1981; Spanos and Mignolet, 1989) consists of generating a
large number of sample excitations, computing the corresponding response samples and

processing them to obtain the desired response statistics. The backbone, of any digital



simulation study, is an algorithm, which provides a set of pseudo-random numbers,
belonging to a population with specified probability density function. Proper processing
of this set of numbers can yield values of sample functions of random process excitations,
with pre-selected frequency content and temporal variation of intensity, at successive
discrete equi-spaced times. Upon generating a single sample of excitation, commonly
available subroutines for numerical integration of differential equations can be employed
to obtain the system response. Another sample of excitation can then be generated and
the computed values of system response can be used to update its statistics. The
procedure, in principle, is very general and applicable to stationary or non-stationary

response of systems of any degree of complication.

2.3 ROTOR-BEARING CHARACTERISATION

Parameter estimation of the elastic parameters of bearings involves establishing a
relationship between the incident load on the bearing and its resultant deformation. Some
of the relevant studies available in literature in the area of dynamic characterisation of

rolling element and fluid-film bearings are discussed in this section.

Rolling element bearings:

Hertzian contact theory (Hertz, 1896) for the solution of local stress and deformation of
two elastic bodies apparently contacting at a single point provides a platform for
determination of the elastic parameters of rolling element bearings. Hertz's analysis is
applied to surface stresses caused by a concentrated force, applied perpendicular to the
surface. In determination of the contact deformation versus load curve, concentrated load
applied normal to the surface alone, is considered, for most rolling element bearing
applications. Methods of calculation of surface and subsurface stresses under a
combination of normal and tangential (traction) stresses are complex, (Zwirlein and
Schlicht, 1980). Owing to infinitesimally small irregularities in the basic surface
geometries of the rolling contact bodies, neither uniform normal stress field nor a uniform
shear field are likely to occur in practice (Sayler et al., 1981; Kalker, 1982). Rigorous

mathematical/numerical methods have been developed to calculate the distribution and



magnitude of surface stresses in any line contact situation, that is. including the effects of
crowning of rollers, raceways, and combinations thereof (Kunert, 1961; Reusner, 1977).

Additionally, finite element methods (FEM) have been employed (Fredriksson, 1980) to
perform the same analysis.

It is possible to determine how bearing load is distributed among the balls or rollers, after
having determined how each ball or roller in a bearing carries load. To do this, it is
necessary to develop load-deflection relationships for rolling elements contacting
raceways. Most rolling bearing applications involve steady-state rotation of either the
inner or outer raceways or both. Rolling element centrifugal forces, gyroscopic moments
and frictional forces and moments do not significantly influence this load distribution in
most applications. Theoretical models (Palmgren, 1959; Ragulskis et al., 1974; Harris,
1984; Eschamann et al. 1985; Stolarski, 1990) are available for estimation of bearing
stiffnesses under static loading conditions. Recently, Chen and Lee (1997) presented a
method for estimating linearised coefficients  of rolling element bearings, which uses
relations of unbalance responses and known system parameters in the construction of an

estimator.

Bearing vibrations caused due to geometric imperfections of contact surfaces were first
analyzed by Lohman (1953) and Gustavsson (1962). Comprehensive investigations have
been carried out on the high frequency response of bearings (McFadden and Smith, 1984)
and its relation to surface irregularities ( Sunnesjo, 1985; McFadden and Smith, 1985; Su
et al., 1993). Lim and Singh have analyzed the vibration transmission through rolling
element bearings in series of publications (1990a, 1990b, 1991, 1992, 1994).

A method for determination of the nonlinear characteristics of bearings using the
procedure of Krylov-Bogoliubov-Mitropolsky has been suggested by Kononenko and
Plakhtienko (1970). Honrath (1960) and Elsermans et al. (1975) have experimentally
examined the stiffness and damping of rolling element bearings. Walford and Stone
(1980) designed and fabricated a test rig for direct measurement of the relative

displacement of the shaft and bearing housing for the oscillating force applied to the



bearing housing, which is used to obtain the stiffness parameters. They found that the
interfacial play between races and housing and shaft play a significant role in the
determination of bearing stiffness and damping. Kraus et al. (1987) presented a method
for extraction of rolling element bearing stiffness and damping under operating
conditions. The method is based on experimental modal analysis combined with a
mathematical model of the rotor-bearing-support system. Effects of speed, preload and
free outer race bearings on stiffness and damping have been investigated. Muszynska
(1990) has developed a perturbation technique for estimation of these parameters. The
technique involves a controlled input excitation to be given to the bearings. Goodwin
(1991) reviewed the experimental approaches to rotor support impedance measurement,
with particular emphasis on fluid film bearing impedance measurement. A general
procedure for identification of restoring force nonlinearity from system’s response to a
white-noise excitation has been discussed by Dimentberg and Sokolov (1991). Nonlinear
stochastic contact vibrations and friction at a Hertzian contact have been studied by Hess
et al. (1992). Analytical and experimental studies are carried out by them, using the
Fokker-Planck equation and simulating the vibrations to the contact region, either

externally by a white Gaussian random normal load or internally by a rough surface

input.

Tiwari and Vyas (1995, 1997, 1997a, 1998) in a series of papers described procedures for
estimation of non-linear elastic parameters of bearings based on the analysis of random
response signals picked up from the bearing caps. The procedures did not require an a-
priori knowledge of the random excitation force induced on the system. The dynamics of
the rotor-bearing system was modeled as a Markov process and Fokker-Planck equations
are formulated. The Fokker-Planck equations were solved and the response was
processed, for the inverse problem of parameter estimation. The procedure was
developed for cases of rigid rotors; single disc flexible rotors and multi-disc flexible
rotors. The study was extended further, to include harmonic excitation to the non-linear
system along with random excitation and the case of an unbalanced rigid rotor was

discussed. The algorithms were also verified experimentally, for a laboratory rotor-

bearing test rig.



Fluid-film beanings:

Vast amount of literature is available on the linear aspects of rotors supported in fluid
film bearings. Reference can be made to the texts by Fuller (1984), Childs (1993) and

Rao (1998) for a detailed study. Some of the relevant works are discussed below.

The idea of representing the dynamic response characteristics of a journal bearing by
means of stiffness and damping coefficients originates with Stodola (1925) and Hummel
(1926). Their aim was to improve the calculation of the critical speed of a rotor by
including the flexibility of the bearing oil film. Concurrently, Newkirk (1924, 1925)
described the phenomenon of bearing induced instability, which he called oil whip.
Robertson (1946) analysed the whirling of a journal in a sleeve bearing. The influence of

fluid film journal bearing on the stability of rotors was reported by Hagg (1946).

The bearings have been approximated, in the initial stages, as short bearings (Ocvirk,
1952) or as infinitely long bearings (Gross, 1962; Booker, 1965). Both types of
approximations have been usefully employed by researchers for bearing analysis. The
analytic finite length bearing model is given by Warner (1963). Later works include those
of Kirk and Gunter (1970, 1975, 19752a) who employed the short bearing model for rotor
dynamic analysis; Simandri and Hahn (1975) and Tonneson (1975) used the short bearing
model in the analysis of squeeze film dampers. Vance and Kearton (1975) examined the

appropriateness of the long bearing model for long squeeze film dampers with end seals.

Several investigators have investigated the combined transient rotor bearing dynamic
problem by numerically solving the Reynold's equation for the bearing reaction force,
while simultancously integrating the rotor equations of motion. Lund and Sternlicht
(1962) initially calculated the linear stiffness and damping coefficients through numerical
differentiation of a finite difference solution to the Reynold's equation. Blok (1965)
solved the Reynold's equation directly via finite differences to obtain mobility
descriptions for finite length bearings. The numerical approach is also followed in the
works of Kirk and Gunter, mentioned earlier, for the short bearing model and by Myrick

and Rylander (1975) for finite length bearing. Orcutt and Arwas (1967) used a similar



analysis approach to obtain stiffness and damping coefficients for both laminar and
turbulent conditions.

Lund (1968) developed a perturbation solution to the Reynold's equation, which
eliminates the requirement of numerical differentiation. A direct analytic method for
deriving a complete set of analytic stiffness and damping coefficients from impedance
descriptions is developed and demonstrated for the cavitating finite length bearing
impedances by Childs et al. (1977). The development of the concept of spring and
damping coefficients for journal bearing is briefly reviewed by Lund (1987). Baheti and
Kirk (1994, 1994a) used finite element method to solve the nonlinear coupled
hydrodynamic and thermal equations to obtain the stiffness and damping coefficients of

seals.

The direct experimental determination of stiffness and damping coefficients of journal
bearing was initiated by Glienicke (1966) and Morton (1971). They used the technique of
excitation of bush sinusoidally in two mutually perpendicular directions, and in each case
measuring the amplitude and phase of the resulting motions. One way of improving the
accuracy of measurement of stiffness and damping coefficients is to collect éxperimental
data over a wide range of forcing frequencies; and to use all of this data to determine the
coefficient values. In publications by Stanway et al. (1979), by Burrows et al. (1981), and
by Burrows and Sahinkya (1982) the system is forced at all frequencies within the range
of interest, simultaneously in horizontal and vertical directions. A method of treating the
unbalance response data from a test rig to determine bearing stiffness and damping
coefficients was suggested by Sahinkaya and Burrows (1984). A similar approach
through the transient response to an impulse or step force was given by Nordman and
Schollhorn (1980). Goodwin (1991) has given a concise account of the experimental
techniques available for use in the measurement of bearing impedances and discussed
the potential advantages and disadvantages of each approach. The frequency swept
rotating input perturbation techniques, for identification of fluid film rotor bearing system
dynamic characteristics are described by Muszynska and Bentley (1990). The method

developed by Rouvas and Childs (1993) is designed to account for an unmeasurable input



to the system, namely the force generated by turbulence and cavitation in fluid film, by

assuming that the applied excitation and the fluid film induced forces are statistically
independent.

Krodkiewski and Ding (1993) developed an on site identification algorithm for multi-
bearing rotor systems based on monitoring the trajectories of the relative motion of the
journals with respect to the bearings. Arumugam et al. (1997) have carried out
experimental investigations to identify static and dynamic characteristics of journal
bearings under the influence of various cases of twisting misalignment. Goodwin et al.
(1997) described a combined theoretical and experimental investigation of linear fluid
film stiffness and damping coefficients. A multi-frequency force signal was used to
excite the bearing and measurements of the relative movement between the shaft and

journal have been made.

Investigations into the nonlinear aspects of fluid-film bearing dynamics have been
relatively few and recent. Choy et al. (1992) have examined the nonlinear characteristics
and their effects on the dynamic performance of a hydrodynamic journal bearing at
various operating conditions. Krodkiewski and Ding (1993a) considered the problem of
static indetermination in the mathematical model for nonlinear dynamic analysis of multi-
bearing systems. Recently, Chu et al. (1998) have described a nonlinear dynamic model
for hydrodynamic bearings which incorporates the nonlinear stiffness and damping
parameters as functions of static bearing stiffness. A finite difference approach is used to
solve for these coefficients. For a detailed account on available experimental data on
hydrodynamic bearings, reference can be made to the extensive survey by Swanson and

Kirk (1997), which catalogues about a 100 published experimental works.



CHAPTER 3

PARAMETER ESTIMATION IN RIGID-ROTORS
SUPPORTED IN BEARINGS WITH NO CROSS-COUPLING

A rigid-rotor supported in bearings with no cross-coupling effects is considered as a first
exercise in linear and nonlinear parameter estimation. This may be the case for a rotor
supported in rolling element bearings, where the cross-coupled stiffness terms are negligible
in comparison to the direct stiffness terms. Similarly, damping is taken to be comprising of
the direct terms only. The effect of the rotor shaft flexibility is also not accounted for, in this
chapter. Rolling element bearings are generally characterized by a cubic nonlinearity. For
algebraic ease, only stiffness nonlinearity is considered. Damping is taken to be linear. This
reduces the rotor-bearing set-up to a single-degree-of-freedom system with cubic stiffness
nonlinearity. An engineering approach for parameter estimation is developed through a third
order Volterra kernel representation of the system response. Using frequency domain
analysis, the first to third order kernels are extracted from measurements of the applied force
and response. A third order kernel factor is synthesised from the first order kernel transform
and is processed along with the third order measured kernel transform for estimation of the
nonlinear parameter. The procedure is illustrated through numerical simulation. The
assumptions involved and the approximations are discussed. The influence of excitation
force, linear damping parameter and probable measurement noise on the estimates is

illustrated through nondimensional simulation.

3.1 Governing Equation And Volterra Series Representation of Response

For the rotor-bearing system shown in Fig. 3.1. modeled as a single-degree-of-freedom

system, the governing equation of motion can be written as

mi+ck+ b+ kN3P = 1(1) (3.1
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Figure 3.1 Rigid rotor in bearings without cross-coupling.



where m is the mass, k" is the unknown non-linear stiffness, while ¢ and k& are the unknown
linear damping and stiffness terms. () in the above equation represents the random

excitation given to the system.

The equation (3.1) is rewritten in nondimensional form as
7"(2)+ 267 () +7(2) + A’ (1) = () (3.2)

where (') denotes differentiation with respectto 7, and

T=w,l

w, =k /m E=c/2ma, n=x/x (3.3)
* -

x"=F_ |k A=k"F2 Ik’ F(©) = £(2) ] Fpa

Employing Volterra theory the system response is taken to be of the following kernel form

n(2)=hy + Ih(r)F(@=1)de, +.] (b (o) (e~ 1) F (5= 5y)dridr,s

+ 7 7 7h3<r,,r2,r3)f(z- ) f(r=1,)f (= 13)dr,drdT3+...... (3.4)
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The response can be, alternatively expressed, in operator form as

() = HLf(1)]

S (3.5)
= LH, /()]
where
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3.2 Synthesis of Higher Order Volterra Kernel Factors

The approach suggested by Schetzen (1980) is employed to define the Laplace transform of

the first-order kernel, H,(s), in terms of the linear parameters of the system, namely @,, and
£. The expressions for higher order kernel transforms H,(s), H;(s) etc. are consequently

synthesised from the first-order transform, H; (s) , and the nonlinear parameter 4.

Replacing the applied force ?(r) by c?(r) , the system response, from equation (3.4) is
(s ] — [+ o] '
Y c"Hy[f (D))= Zc"n,(7) 3.7
n=1 n=1
where, ¢ being a constant and for convenience

7, (1) = H,[f (7). X))
Substituting the new force and the response of equation (3.7) in equation (3.2) gives

=] " o ' @ @ 3 —_—

{ zc'n, (T)} + 25{ 2}0" 77,,(1)} + { 216”77,, (T)} & ﬂ»{ zc'n, (f)} =cf(z) (3.9
n= n= n=1

n=1

The above power series representation of the governing equation is solved by equating the

coefficients of like powers of ¢.

Equating the coefficients of the first power of ¢, one obtains
nil(z) +2&7; () + My (1) = (7). (3-10)
Noting from equation (3.4) that n,(7), the first term in the Volterra representation of 7(7),

is the solution of the linear part of the differential equation (3.2), i.e.

H\[f(D)]=m(7) (3.11)

the Laplace transform of Hj, is

H (s)=1/(s* +2&+1). (3.12)

Similarly, equating the coefficients of c? gives



13(t) +28n5(7) + 1,(7) =0 (3.13)

The above requires the second order kernel &, to be identically to be zero, i.e.

hy(71,7) = 0 (3.14)
Equating the coefficients of ¢ gives

75 (z) + 2En3(2) + 173(2) = —An3 (1) (3.15)

Similar to that in the case of equation (3.10), the above requires

13(t) = —AH,[7; ()] (3.16)
Now, since

73(7) = H3[f (7)) (3.17)
one gets

H /()] = =AH[n; (7)] (3.18)

and in terms of Laplace transforms (refer the block diagram representation of equation (3.18)
in Fig. 3.2)
Hiy(51,52,83) = A [W3(s51,57,53)] (3.19)

where W¥;(s;,8,,53), has been christened as the synthesised third order kernel factor and is

mathematically expressed as

Y, (8,,8,,853) = —H (5)H,(s,)H,(s5)H, (5, + 5, +53). (3.20)

3.3 Wiener Kernel Representation of Response

The practical application of Volterra series analysis is known to present two major problems,

namely, measurement of individual kemels and convergence of the series. Wiener (1958)



ST m(@) n() Hin (O] ns()=Hs7 ()]
— H »/Cube-law device > H, > —A >

Fig. 3.2 Block diagram representation for the operator, Hj.



suggested a set of orthogonal functionals in order to circumvent the above problems. If 7(1')
is a stationary Gaussian white noise excitation with variance A (which is same as the power
spectrum, S s (@). of input force for a Gaussian process), the nth order Wiener kernel written

as

En [“’n ’u'n-—l(n)" """" ’WO(n) ,f(’l')] (321)

is an orthogonal functional formed from Volterra functionals such that it is orthogonal to any

homogeneous Volterra functional of degree less than n, i.e.

H, 17 (0)lgaw, W,,.'}I;; ------- s Woeny; S (£)] =0 (3.22)

The system response can be readily written in terms of the Wiener functionals, as below (Lee
et. al., 1964)

n(r) = w, +?w,(r] )f’(r-—rl)dq

+ [ [ wolr 1t f (e =) (5 =7,)drdr, “A-Jws (7y,7;)d 7,

(3.23)
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whereby owing to the orthogonality property the Wiener and Volterra kernels can be shown
to bear the following mutual relations (for a third order system response representation,
Schetzen (1980))

hy(1).75.73)=W3(7.75,73)

hy(T1.T5) =Wy (T(.T3)

h(r))=w(r))+ ”'1(3)(T1)

hy = wqy + Wy

(3.24)

with

wy3)(11) = =34 [w;(11,75,72)d7;

-
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3.4 Extraction of Wiener Kernels from Measured Response

In view of the stated difficulties in the measurement of Volterra kemnels, the measured system
response is employed to extract the Wiener kernels. These Wiener kernels are then employed

to generate the Volterra kemels, using the relationships of equations (3.24).

Extraction of Wiener kernels from measured response involves enormous amount of data
processing, since the kernels are multi-dimensional. The Laguerre filters proposed by Wiener
(1958) or the alternative approach of using cross-correlation techniques and time delay filters
suggested by Lee and Schetzen (1965), present formidable amount of data processing. Use of
a complex filter, in the frequency domain (French and Butz, 1973), reduces the
computational effort and is also suitable for such analysis since the Wiener kernel theory
involves multidimensional convolutions. The scheme, employing a complex exponential
filter, is graphically shown in Fig. 3.3. The Fourier transform representation for the variables

in equation (3.23) may be expressed as,

7(0) = [F(w)e’ do mz) =" [n(w)e’” do
o Y & o
o) o
wi(r) = [W) (@, )(,Jaufla’a)I Wy (Ty,79) = [ Wy (0,0, )ej(wlrﬁwzrz)da)]da)z

o f
’ J( Ty +Wr T+ Tq)
Wi(T),72.73) = [W3(0).0y,03)e” 1227733 day dow, doy
-

(3.25)
Substituting equation (3.25) into equation (3.23) and using the relationship that

[« SN
[e JOT 41 = 5(w), the Dirac Delta function, (3.26)

== Q)

one obtains
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Fig. 3.3 Scheme for evaluation of the first order Wiener kemnel transform, W} (@) .
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1
+ T TW = = J'(col+a) ) ©
L 2((01,@2 )F(a)l )F(a)z )e 2 da)lda)z - A IWz (Cl)z ,‘mzﬁwz
.« (arsors (3.27)
+ 1] [W5(01.0,,0)F (@) F (@) F(@3)e” 2™ 4o, dwrydeo,
—-34 J I"S(a)l,wz,"‘wz)ﬁ:(a)] )da)lda)z LR
The output z(r) . from the exponential filter, can be written as
o« 3 -
2(r)= [’ f(z - ))dr,
e 3.28
o, (3.28)
= F " (w)e
The ensemble average of the output of the circuit (Fig. 3.3) is obtained as
(n(r)z(r)) = <F <w>> R
o _ ok --jr(a)l -w)
+ jW,(m, )<F(m] VF (co)>e dw,
o o e Ny
+ [ Wy (w0, )<f~;(wl )1?"'(602 )F*(w)>e L w)da)ldwz
) iy
- _: > ¢]
~A<F*(w)>e 10T [ Wy (0q,~0,)do, (3.29)
-0
w o A - - - —x —jr(a)1+w2+a)3—w)
+ [ IW(w).wy.03 X F(@))F(03)F(03)F " (0))e dwdw,ydws
L S« S
oo
341 | W3(w1,a)2,—w2)<F(co,)F (co)>e Jree) dw,dw,
Q) 00
F s

Since f(r) is stationary Gaussian white noise with zero mean and variance A4, the Fourier

transform. F(e), is also a stationary Gaussian white noise process and the ensemble

averages of the products transformed functions are (Raemer, 1969)



(Fo))=0
(F(@))F(0,))= 480, +o,)
(F(col)F(a)z)F(w3))=O
(F(w,)ﬁ(coz)f(a):;)f«:(w,‘)): Az[é'(cul +w,)8(w, +c¢>4)]+.42[5(co1 +@3)5(@, +@,4)]

2
+4°[8(w; + 0 )60, + D) (3.30)
The relations of equation (3.30) reduce equation (3.29) to

(m(2)2(7)) = AW, (@) (3.31)

However, due to the equivalence of time and ensemble averages, the ensemble average

(m(7)z(r)) can also be written as

. 1 T/2 .
(n(r)z()) = Jim — [ moa(nr (3.32)
giving
(n(0)2(0)) = F (@) () (3.33)

Equations (3.31) and (3.33) give
AW, (0) = F (@)n(®)

from which the expression for the Fourier transform of the first order Wiener kernel is be

obtained as

Wy (@) = F" (@)n(w)/ 4 (3.34)

For measurement of third order kernel transform, a circuit involving three exponential delay

filters as shown in Fig. 3.4 is considered. The output, z(r), from the exponential filters is

[+ <] -1 - [+ ¢] -7 - - o] —i _
2r)y= [e NV fa—rdr, Je U2 f(x—5y)dry [ (- 13)dry  (335)

-0 -0 —0
The above, after some algebraic manipulations, reduces to

—j(ml+w2+w3)r

2(1) = F(~w,)F(~w,)F(-w3)e
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Fig. 3.4 Scheme for evaluation of the third order Wiener kernel transform, W3 (@, w, ®)



The ensemble average of the output of the circuit can be expressed as

(1(©)2(0)) = A2 [F(0))8 (-0 — 3)e” @209
W (@)8(-0y ~aq)e” TN (3.36)

+ W (03)6 (-~ — a)z)ej(_w’_mz)r [+ 64°W; (o, ,0y,03)

The equivalence of time and ensemble averages gives

. 1 T/2
(n(1)z(2)) = Jim ;”Tjg(f)Z(r)dr (3.37)
giving
((D)z(1)) = F(~0))F(~0,)F(~03)n(@, + o, +05) (3.38)

Equations (3.36) and (3.38) give the expression for the measurement of the Fourier transform

of the third order Wiener Kernel as

By (.05 .@3) = (1 /6A3)[F*(m,)F‘*(wz)F*(w3)q(ml ol + ws)]
= (1 6A) W) (0)8(0y +03)+ Wi (@)6(@; + @3) + Wy (@3)8(@, +0,)]
(3.39)
Wi(w,,ws.w;3) forms a multi-dimensional surface on the (@,,w,,®;) axes.
Measurements are made for special trispectral kemnels with @; = @, = w3 = @. These

kernels are functions of only one variable  and are much easier to compute and interpret.
(Bendat (1990) has termed such single function transforms for Volterra series as Special
Trispectral Kernel Transforms). The Special Trispectral Wiener Kernel Transform can be

readily written from (3.39) as

By (w.w.w) = (] /6A3)[{F*(a))}3n(3w)] - (17 24)[#} (0)8(w)] (3.40)

3.5 Parameter Estimation

The Special Trispectral Wiener kernel Transforms can be extracted from the measurement of

the applicd random force and system response and employing equations (3.34) and (3.40).

e e e -
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Subsequently, for a third order representation of the system response, noting the equivalence

between the Volterra and Wiener kernels (Eqn. 3.24), the third order Special Trispectral
Volterra kernel transform can be computed from

Hy(w,0,0) = W3 (0, 0,w)

= /6,«13)[{1?"&0)}3 r;(3a))]— 1/ 24)W; (@)5(w)] G4

Similarly, from the relations of equations (3.24), the expression for the first order Volterra
kernel transform, in terms of the measured Wiener kernel transforms, becomes
Hy (@) = Wi(@) + W3 (@) (342)

where W)(w)is as given in equation (3.34) and W\3)(@)is the first order derived kemel
transform,

Wiy (@) = =34 [Wy(0,0,,~0,)dw, (3.43)

The linear parameters, @, and & can be readily obtained by equating the measured first
order Volterra kernel (of equation (3.42)) to its analytical expression given in equation
(3.12). Standard curve fitting techniques can be used. These, estimated linear parameters,

@y and £, are employed further in the estimation of the nonlinear parameter A .

The estimate for A is obtained by equating the synthesized expression (Eqn. 3.20) and the
measured value (Eqn. 3.41) of the third order Volterra kernels of the system. Thus

A= {(1/6A3 )[{F’*(m) }317(3(0)] - (1/2A)[W1 (m)&(a))]} /[k}g (@0, 0,0)] (3.44)

3.6 Computer Simulation

The procedure is illustrated through numerical simulation of the response of the
nondimensional equation with cubic nonlinearity, Eqn.(3.2). Owing to the statistical nature of

the estimation procedure, illustration is carried out for various values of the nonlinearity

parameter, A . The procedure is repeated for various values of the damping ratio, £.



The forcing function in equation (3.2) is a normalised random force, f(7), with zero mean
value. The excitation force is simulated through random number generating subroutine and is

normalised with respect to its maximum value F_, . A typical sample of this excitation

force is shown in Fig. 3.5(a), while Fig. 3.5(b) shows a typical nondimensional response,
n(t), for nonlinear parameter 4=0.1 and a damping ratio, £ =0.01. The response has been
numerically generated for 4096 number of instances in the nondimensional time ( 7 ) range 0-
2048, using standard fourth-order Runge-Kutta subroutine. The response is computed for
2000 number of samples of the simulated random force (The influence of the number of

samples in the ensemble is discussed later).

3.6.1 Estimates of Linear Parameters
Fig. 3.6(a) depicts the power spectrum of the random force averaged over the ensemble of
2000 samples. The corresponding ensemble average of the power spectrum of the response

can be seen in Fig. 3.6(b). The first order Volterra kemel, H, (@), Fig. 3.7(a), is then
computed, using the expression of equation (3.42), over the ensembles of the force and
response. The linear parameters @, and & are computed from H, (@), through routine

modal analysis procedures (Ewins, 1984). The linear parameters, thus estimated are

w, ~ 0.1606 (cycles/ 7) = 1.009 (rad-/ 1)

and & = 0.012.

The curve of Fig. 3.7(b) shows the error incurred in the estimate of H, (@), due to the

statistical nature of the Fast Fourier Transform computational procedure and the finite length
of an individual sample (4096 in the present case). The normalised random error, as known
(Bendat and Piersol. 1986). can be seen to be the maximum in the vicinity of natural

frequency of the linear part of the system (lrad / 7 ie. 0.1592 cycles / 7). The error in the

frequency range 0.0 - 0.10, is less than 4%. It can be readily inferred that the normalised

e higher order kernels would show a similar trend and the error in the estimate of
0-0.10 cycles /

error for th
the nonlinear parameter A can be expected to be less in the frequency zone 0.

T.
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Fig. 3.6(b)  Power spectrum of the response (averaged over 2000 samples)

(for simulation values of A =010; £=001).
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3.6.2 Estimates of the Nonlinear Parameter
Nonlinear estimation s carried out for a range of values of the nonlinear parameter A, and
damping ratios ¢. The response of the nondimensional equation (3.2) is numerically

simulated for 4 = 1.00, 0.10 and 0.01, while keeping the damping ratio & fixed at 0.01. It

may be noted from equation (3.3) that A includes both, the nonlinear stiffness term k" and

F,, . - the maximum value of the applied force. A low value of A, for a fixed value of k"

implies a low value of F, .. , while a high value of 4, for the same k™ implies a high F,,,
and vice-versa. The results for such a nondimensional parameter can be readily employed to
design experiments and decide the excitation level for an expected nonlinearity of a given

system.

The estimated results for the third order kernel are depicted in Fig. 3.8. The third order kernel

factor W, (w.w.), synsthesised from the measured first order kernel transform H, (@), and
the measured third order kernel transform H3(®,®,) are shown in Fig. 3.8 (a), 3.9(a) and

3.10¢a) for 2 = 1.00, 0.1 and 0.01 respectively (£= 0.01). It is to be noted here, that while
the first order kernel is estimated in the entire available frequency range 0.0 - 1.0, the third
order kernels. involving a 3w factor, have to be restricted to one-third of this frequency zone
(i.e. 0.0 - 0.33). It can be observed, from the figures, that while the measured third order

kernel transform H (@, ®, @) is reasonably accurate in showing the harmonic at @, /3 (at
nondimensional frequency = 0.053), the identification of the harmonic at @, (at

nondimensional frequency = 0.159) is weak, the best approximation being in the case of 4 =
1.0. The estimation of A, from these kemnels, is therefore restricted to the frequency zone of
0.0 - 0.10. The estimates of the nonlinear parameter 4, obtained in accordance with the
relationship (3.44). are shown in Figs. 3.8(b), 3.9(b), 3.10(b). A fourth order polynomial
curve regressed through the estimates of A, over the frequency range, is also shown in
Figures 3.8(b). 3.9(d) and 3.10(b). The mean values of the estimates of A are found to be

1.08. 0.14 and 0.05 respectively. The order of the magnitude can be seen to be estimated

correctly in all three cases, while a good accuracy can be seen to be obtained for A=1.0 (Fig.

3.8(b)). It is to be noted here that the response representation of equation (3.23) has been
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restricted to include kemnels only up to the third order, in order to keep the computations to a
manageable level. Inclusion of higher order kernels st 7t order) in the response
representation can be expected to improve the accuracy of the estimates at increased
computational effort. Another source of inaccuracy in the estimates is the finite length of
samples and the ensemble size. The nondimensional time interval for sampling has been
taken as 0.5 and 4096 response instants are collected for a sample data set which gives a
frequency bandwidth of + 1.0 cycles/ 7 and a frequency resolution of 0488 x 10~ cycles /
7. Additionally it may also be noted that the numerical fourth order Runge-Kutta procedure

of response simulation is also a source of error.

3.6.3 Influcnce of the Number of Samples

It was observed that while increasing the sample size beyond 500 has insignificant influence
on the first order estimates, the influence on the third order estimates can be seen from the
curves of Figs. 3.11(a) - (d). The figures show the power spectrum of the input for ensemble
sizes 500, 1000, 1500 and 2000 along with the corresponding third order kernel factor

Y3 (@, @, @) and the measured third order Wiener kemel transform, H4(w,®,®), which are

both observed to get refined with increasing number of samples in the ensemble. In the

present study the ensemble size has been limited to 2000.

3.6.4 Influence of Measurement Noise

Errors can be expected during an experiment, in the measurement of the excitation force and
the response. The influence of measurement noise is studied by contaminating the simulated
force and response signals, individually and simultaneously, with 5% simulated random
noise. The frequency range is split into two and Fig. 3.12(a) shows the third order kernel

transform H 3 (@,w,) and the third order kernel factor ¥;(w,»,) (for 5% noise in both

input and output), in the frequency zone of interest 0.00-0.03 cycles / 7 , on a magnified
scale, while the remaining portions of the curves are shown in Fig. 3.12(b). Other estimates

are also observed to be similarly robust to measurement noise influence.
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3.6.5 Influence of Damping on the Accuracy of Nonlinear Estimates

Apart from the nonlinear parameter 4, the other nondimensional parameter contained by the
governing equation (3.2) is the damping ratio &. Numerical simulation is carried out to check
the accuracy of the estimation procedure and the response is simulated for two different
damping values & = 0.01 and 0.001 (for A= 1.0). Figs. 3.13(a,b)-3.14(a,b) show the

estimates in the two cases. The estimates of A ( 1.08 and 1.72, respectively) can be seen to be

sensitive to damping being accurate for higher damping.

3.6.6 Identification of the Sign of Nonlinear Parameter

In the results depicted so far. nonlinear estimates have been arrived at by dividing (refer
equation 3.44) the absolute value of the measured third order kernel transform,
Hy(@w,,) , by the absolute value of the third order kernel factor, ¥;(@,®,®) . Both these
terms are, however, complex quantities and their absolute values have been considered while
estimating the nonlinear parameter A , solely for achieving better smoothening of data. This
involves the loss of information on the sign (whether positive or negative ) of A . The
nonlincar parameter A being a real constant, information on its sign along with its

magnitude, can be readily obtained if the real part of H;(w,w,w) were to be divided by the
real part of W, (w,w,w) (or the imaginary part of Hy(w,w,w) were to be divided by the
imaginary part of ¥, (@,0,0) ). Consideration of equations (3.19) and (3.20) reveals that -
Y (w.w,), a term synthesised from the first order kernel transform is a function solely of
the linear parameters @, and &. and will be the same whether the nonlinearity in system is
(+ A )or (- A). The information on the sign of A is contained in H3(®,®, @) , which shows

a reversal of sign, with change in the sign of A. This is illustrated in Figs. 3.15-3.17. The

real and imaginary part of the synthesised third order kernel factor ‘¥, (w,0,0) are shown

Fig. 3.15(a), (b). The real and imaginary components of the measured third order Volterra

kernel transform H;(w,w,w) for a positive nonlinearilty (i.e. +A) are shown in Fig.

3.16(a), (b), while those for a negative nonlinearity (i.e. -2 ) are given in Fig. 3.17(), (b).

The peaks, occurring at a frequency of 0.056 cycles / T , can be seen to bear similar signs
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(Figs. 3.15, 3.16) for ¥;(0,0,0) and H;(w,0,0), for positive nonlinearily. However,

they bear opposite signs for negative nonlinearity, Figs. 3.15 and 3.17.

The results shown in Figs.3.15-3.17 pertain to nonlinearily A equal to +0.01 and -0.01 and a
value of damping parameter £ equal to 0.01. Similar results are obtained for other values of

the nonlinear parameter and damping ratios.

3.7 Remarks

The procedure developed gives good engineering estimates of the nonlinear parameter. The
estimates are satisfactory for a range of system damping. It also appears to be robust to
measurement noise. The analysis presented is in nondimensional form and can be suitably
employed to design experiments. The accuracy of the estimates, shows improvement with the
increase in the number of force and response samples, over which averaging is carried out.
Extension of the present procedure to systems with more than one degree of freedom and

involving coupling is explored in subsequent chapters.



CHAPTER 4

PARAMETER ESTIMATION IN RIGID ROTORS
SUPPORTED IN BEARINGS WITH CROSS-COUPLING

The parameter estimation procedure, becomes more involved, if the cross-coupling effects in
the bearings are taken into account. This may be the case for a rotor supported in fluid film
bearings. In contrast ta the no cross-coupling case, which could be treated as a single-degree-
of-freedom system, bearings with cross-coupling pose a nonlinear mO-deéree~of—ﬁeedom
problem. It is a system where an excitation, say, in the x-direction causes motion in the both
the x and y-directions. Such a case, therefore would require cross-kemels to be defined,
which can be convolved with the excitation for the response representation, in terms of

Volterra or Wiener series.

Starting with the equations of motion, Laplace transforms are employed in this chapter, to
derive expressions for the first and higher order direct and cross-kernel transforms. The
algebra is kept simple by taking the damping to be linear and without cross-coupling. The
nonlinearity is taken to be cubic and analysis is carried out in the frequency domain. First and
the third order direct and cross-kernels are extracted from the measurements of the excitation
force and response. Third order direct and cross-kernel factors are synthesised from the
measured first order kemel transforms. These synthesised third order factors are then
processed along with the measured third order kemnel transforms for estimation of the
nonlincar parameters. The procedure is illustrated through numerical simulation. The
estimation is carried out for various values of the nondimensional nonlinearity parameter and

damping ratio. Statistical considerations and effect of probable measurement noise are

illustrated and discussed.

4.1 Governing Equations and Volterra Series Response Representation

The equations of motion for a two-degree-freedom idealisation of the rotor-bearing system

shown in Fig. 4.1 are



£ . . .
igure 4.1 Rigid rotor in bearings with cross-coupling

L



rnif+cni+knx+kxyy+k£x3+kg Y= )

. . 4.1
m}'“'"c.‘.‘y"Fkwy+kyxx+k)§,y3+k}ﬁx3 - £, (4.1)

In the above equations £, k,, are the direct linear stiffness terms, k.. k,, are the cross-

: N LN : : ) N
coupled stiffness terms, Kk, k,, are the direct nonlinear stiffness terms, while k2, k}],;

represent the nonlinear cross-coupling terms. The damping is linear and comprising of direct

terms ¢,.c,, . The excitation forces in the x and y directions are f;(z), S (t) respectively.

Defining

T = p.f . p= /kxx /m

x?](z‘):x/_Xsl ’ yﬂ(T)=}’/sz§ “4.2)
X‘" = Fma“\x /k‘“, j—;(T) = j;'(f)/Fmaxl; i= 1,2

and substituting in (4.1) the equations of motion can be written in nondimensional form as

D)+ 280 (0 () + AL @) + AL T (0 + A%, 0 (1) = f(D)

v i (4.3)
Vi) + 28, Y (x) + AL Y (e) + Al )+ A ) + A 0 () = £, (7)
where
N2
¢ k; iy 4725 _ _
S = Ay ==, Al = i=x,y;j=xy 44)
2mp K ko

The solution of equations (4.3) is represented in terms of Volterra operators as

n r)z.w[f,(rwfﬂr)] )
Y n(0)="H[ (1), /(7))
where, (with ¥ denoting x or )

(o) HOEH + Y HOU @1+ Y HP i@, f;(0)]

iz],z i=1.2;j=1,2 (4_6)

+ SFHPPLG), 0, Fe @]+ e

i=1,2;/=1,2;k=1,2



The individual operators of equation (4.6) are given in kernel form by

H17, ()] = J LROVACEEN LS for i =12

"H('v”[f(r) f ()] = f J"ch 'j)(Tl’fz)fi(T‘fl)fj(f‘fz)dfldfz

1l (4.7)
for i=12; j=12
"H(”“[f(f)f(f)fk(f)]‘ | R CR RN VACEE VT CE VA CREE)

x drydr,dry  for i=12; j=12; k=12
with mth order Volterra kernel

I € R To)=0 for 7, <0, p=123, ... n. 4.8)

For convenience. writing the Volterra operators as

o= H 0]

“py ! =t HE 10, T (0)] 49)
“ e =X HR ] F (.S (0, fi )]

the response of equation (4.5) can be written as

G ERD IR > 7S + T E A

1.2 =1.2,=1,2 =1,2; -unz
N =12 i N (4.10)
- (t) N R
U(T) Z m Z Y 7> + Z 73 Farreinns
1.2 i=120=1.2 i=1.2;j=1.2:k=12

4.2 Synthesis of Higher Order Volterra Kernel Factors

The Volterra operators are now determined as follows. The excitation forces f(D), fz(r)
are replaced by of, 1(7) and cfz (7) respectively, ¢ being a constant. Noting equations (4.7),

the resulting response of the system, becomes

(T) Z ¢ X (‘) ZCZ X”(zla]) + 203 xﬂg”jak)_*_ .........

=12 I=l,2;j$l,2 i=1‘2;j=1,2;k=1,2 (41 1)

2 3y (i,).k) ’
Yn(r) = ZC i+ Zc ng‘” + Zc 7y s

12 i=1.2;j=12 i=1,2,j=12:k=1.2



Substituting equations (4.11) and the derivatives in equations (4.3) one gets

i=1,2

+28| D +

1=1.2 1=12:j=12
x (1) 2 x_(i,j
Zc m Zc 5 20
i=1,2 i=1,2;j=1,2
L (1) 2y, (i,))
+ A7, Zc 7 >t I+
Li=1,2 i=12;j=1.2
+’1ﬁ ZC x (t) + ZCZ xngi,j)_*_
_t»»l 2 i=12;j=12
N (l) 2y (i,))
+ A, > e Zc ny P+
Li=L 2 i=1.2:/=12
(1) 2 158
ZC‘ U/ ZC Yy
| =12 1=12;j=1,2
-
(1) 2 y_ (1))
+2&,0 Dty + Yt i
[ i=1.2 1=12;)=1,2
Il () 4 2y (iJ))
+ A, Zc ) Yt I+
Li=1.2 1=1,2; =12
+1£ Zc ’7(:) Zc2 X’?él’j)'*'
[ i=1,2 i=1,2;j=1,2
N (:) 2 (i.J)
+/1 Zc m ZC Yyl +
__ml 2 i=1,2; =12
N ( 2 x(i,))
+ A% Seinh e Yot T+
[ i=1,2 i=12;j=12

SecEp +

i=12;j=12

Zcz xnéi,j)'_*_
2.c* Ay

i=1,2;j=1,2;k=12

i=1,2;j=12;k=1,2

3 .k
DI

=1,2;j=1,2;k=1,2

3 i j.k
Zc y,]gt Jk)

i=1,2;j=12:k=1,2

Z C3 xn:gi,j,k)

i=1,2;j=1,2:k=1.2

3 i, J .k
LB

i=132;j=1,2:k=1,2

263 }’néf-.l

i=1,2;j=1,2:k=1,2

-+

i=1,2;j=1,2:k=1.2

3 i j .k
Zc yngu )

i=1,2;j=12;k=1,2

3 x_(i.j.k)
2.¢ s

i=1,2;j=1,2;k=1,2

3 ,J k)
Zc y,éu

i=1,2;j=12;k=1,2

ZCS x ﬂgi,j,k)

i=1,2;j=1,2:k=1,2

Zc.'i xﬂgi,j.k)"
ZC3 xngi,j,lc)'

J

3y (i, j.k)
Zc }Ugu)

J
43
-3
=Cf1(f)
L)
-3
]
-3
= cfz(t)

(4.12)



Summing up the responses of equal order, one can write

I order response

Zx (i)

i=1,2
o 4.13
‘=S ¥ (4.13)
i=1,2
II order response
= > a
1=1,2,7=12
: (4.14)
Y, = Z 77([]
i=1,2;/=12
111 order response
. &
1y = z 770] )
i=1,2;/=12:k=1,2 @15
. k .
Yy = Z '7“1 >
1=1,2:/=12:k=12
Noting the following symmetry of kernels (Schetzen, 1980)
xﬂé’ 1 ,](/v) XTI“/” xn(JlJ) xﬂ(ut)
Yol (/1) (o)) (AN Ty i (4.16)
pits ] ,] 1) v,,/ J v,hj,j,

and using equations (4.13)-(4.16), equations (4.12) are written in condensed form as,

= ‘ 1 N o n ’ N X n ’ 7
Zc"["‘rz,','+2é.u"n,’,+"nn+ﬂx;,ynn]+1n TN, | Ay X" Tn, | =dfi()

n=1] n=1 n=1

3 - 3
S|+ 28, T+ Ay T, + A *q,,]u;‘;[zc" "m} +zf{zc" Xn,,} = of,(7)
n= 1 n=1 =
(4.17)
Equations (4.17) are power series in ¢ with coefficients of ¢” being 7, or ’n,. The

responses, *77, and *7, are determined by equating the like powers of ¢ as follows




C'1 terms :
'+ 28 oI + AL Yy = fi(0)

Y ot Ly - 4.18
}771 +2§.¥?’ Jnl +/1)j\‘ }771 +/1f;x xn] =f2(1') ( )
c2 terms:
5+ 26 Myt g+ AL, Yy =0

) N 4.19
ynz + 25}3. '}772 +/l§'9, y7]2 +/1§;X X772 =0 ( )
(."3 terms:
Y+ 28 Ty + AL, Yy + AN “m AN =0

(4.20)

Y115 +2£, ' +i§;, Y1 +/1}1;X 15 +/1J1X, yn,3 +/'L}A,fr ’1713 =0

Equations (4.18)-(4.20) can be solved sequentially. Taking Laplace transforms of equations

(4.18), for zero initial conditions, one obtains

[ (5)+ 260 *m()+ () +A5 i ()] = ()

4.21)
[52 V() + 28,8 Y my(s) + AL, Y i) + A 771(5)] =F(s)

Solving the above two simultaneous equations, the solutions for *7;(s) and ¥, (s) are

(s? 4285+ A5, )y (5) = An, Fy (s)
(57 + 28 s +INs? +28 5+ A5)) — (An Ay )

"m(s)=
(4.22)
(s” +2£,5 + DFy(5) ~ Ay, Fi (5)
(2 +2&, s+ +2& 5+ AL)— (A5 A7)

y771 (s)=

Referring to the notations (4.9) and (4.13), the individual Volterra operators, from the above,
are



(s> +2£,5+5)

x py(D) —
H'(s)=—; 2 L
(5" +28 s+ )(s* + 285+ A5 ) - (AL AL))
5 —A‘L'
HP ()= 5 Y L L1
(s°+2& s+ 1)(s +2§»,s+/1”,)*(lxy/1yx)
(4.23)
L
YHW (6) = - = A
p(8) 2 2 L L ,L
(" +2&,, s+ 1)(s +2§Ws+/1y}.)—-(/lxy/1yx)
2

2 2 L
(s + 2 s+ 1)(s” +2&, 5+ 20) - (AL AL)
For the second order kernels, the Laplace transforms of equations (4.19), similarly give

[sz 0.(8)+2E .5 Ty (s)+ T, (s)+ /1;, % 772(3)] =

| ¢ ; (4.24)
[ 7m09) 4 28,5 "y () + A5, ma(s) + 43, * ()] =0

which yield

7,(8)= 0 (4.25)
Y1,(s)=0

that is, the second order kernel is identically zero -
a7) =0 (4.26)
'yhz(rl.. T: ) = 0

In order to synthesise expressions for third order kernels, equations (4.20) can be written as

X X ) Ly —
"ny4 25, Tty Ay T3 =4 (4.27)

‘ : L L x _
’ 77;"*"2;\3 ’ 77.;""/1»- y773+"{yx 73 =4

where the following abbreviations have been used

N ox 3 Ny 3
g =-2% ~ Ay ' M (4.28)
Sy 3
gy ==Ay *mi - AL Tm



Equations (4.27) are linear in 773, similar to equations (4.18) and therefore the solution in
terms of Volterra operators is

“m="H,lq,.q,]

) 429
"m="Hlq,.9,] @2
that 1s
THy[ /(7). f2(0)]="H,[g,,9,]
e ) (4.30)
YHi[ fi(0). [2(D)]="H, (91,9, ]
However. since *H, and * H, are linear operators, one obtains
"n13="H,[q;.9,]
=.¥H1(l)[ql]+.¥Hl(2)[q2]
(431)

"my="H,[4,.9,]
='H\"lg,+"H,”(g,]

Noting the abbreviations (eqn. 4.31), the terms on the right hand sides of the above
equations, are individually expanded as
Mgyl AL T = 2 )
= H =AY T H A ) (432)
= mAw CHPE M= AL T m)

In the aboyve equations

17) - 177:”*"7](2)
xpypil 2)} 7
N CTRA IO @)
\*,7 - \m(ll+$7h(2)

=H{"[f,@)+ *H?[f(0)
Taking Laplace transforms of equations (4.32) gives

] 1-1.1,1 xagy i-1,1,2 XX 1122 xxygy1-2.2,2
D10, (s5;,8.85)] = AN (W3 43 T 43 +2 ) )(4.34)

+/11\(qu1111]+3 \{/11]2+3xyqj]122+ﬁ\_}11222)



In equation (4.34). the terms ™ \P3(i-'j,k.1)(sl ,52,53) and Jr.v\},3(1—1‘,1‘,10(5I ,55,53) have been

called in this work as third order kernel factors and are defined as

(1- .k.1) j
W 12083) = = CH (5145, +53) "HY (s)) "HP (5,) *HD (s3)
xyagy(-1,7.4k) _ ! ) 1
2 (51.52.53) = = “H{" (s, + 55 +53) "HO (s5,) "HY) (s,) YH® (s3)  (435)
1=12;j=12;k=12;1=1.2
The third order kernel factors above, can be readily constructed, using equations from the

first order kemels *H{" (s), *H® (5), YH (s), YH®)(s).

Similarly, the Laplace transforms of other terms on the right hand side of equations (4.31)

can be worked out to be

X ry(2) . _ 2N g 2-L1L1 N 2-1.1.2 ' 2-1,2,2 -
H{7[Qa(51-57.53)] = Aq,, (P 43 D@2 3 9@2el22 | xyg2-2.2.2

) ; (4.36)
+/1.;;(X.I \1132 l,l,l +3 .x.xll_;; l.l.2+3 XX\P32—],2,2+XX\}/32—2,2,2)
yj']{”[Q;(S;.S:.% )] - /1}:',: (y.x\_y:il-l,l,l e yx\P;—l.l,Z 43 yx\P31—1,2,2+yx\Pl—2,2.2) ,
N ryugsl-LE] wayl=1.1.2 wwl-1,2,2 , y\gpl-2,2,2 (4.37)
+A 5 (75 P 3 2 W +7Y; )
yHI(Z)[QZ(SI'sE'SB )] = /'l}/\; (}’}/\{j32—1,1.1 +3 }’_1’\.1132—1.1,2 +3 }?\}132—1,2,2_*.}{})\},32—2,2,2) y .

N syx\s2-111 ¥y 2-112 g 2-1,2,2 g 2-2,2,2
PGl Zai B R Bk Fat il SeS

In equations (4.36)-(4.38), the following third order kernel factors have been used in addition

to those defined in equation (4.35).
v (e : " k I
WL IR (550 sy = = PH (s + 55+ 53) TH (5)) PHUY (52) YHD (55)

. . ] .
poglih o o sy = = THO (s, 45, +53) “H (1) "H (55) “H{P (s3) (4.39)
i=12;j=12; k=12;1=12

The Laplace transforms of the third order kernels (equatiﬂons (4.30)), can now be expressed as



XH3(51“5'2 -.53) = X’QJX (qul:;l'.l’l’l +3 JC.X\{/Bl—l,lJ +3 ”\{J;“l,2,2+xx\},31—2,2,2)
N (v gl-11 1-1,1,2 - -
+/1xy( ¥, +3 Py, +3 X.vq;3l 1,2,2+xy\P; 2,2,2)
+Al}\'y (xyq,Bz—l,l,l +3 “‘3’\.]132‘1’]'2 +3 xyq,g’z—l,z,z_i_;y\},?’z_z,z,z)

N rxx\gy2-111 xx\y2-1,1,2 _ _
FAL (TR 4 3 2ol 3 g 2o122 | angg2-2.2.2)

(4.40)
¥ — N (yxgl-l1] - - _
THy(51052.83) = A CFW370 43 005 7H2 4 3 xgtl22 xg1-22.2y

N o I—lvl»l ! 1- Ay ' - -
, ny(}’VLIJB 3 y}\ys 11,2 F3 xn;;; 1,2,2 Iyy\I;31 2,2,2)
LA 'q/2~1,1,l way2-1,1.2 W 2- -

N 2-1,1,1 -1,1,2 - _
+,1yx(yx\113 +3 yx\P32 L2 3 m},32 1,2,2+yx\_P:32 2,2,2)

4.3 Measurement of Wiener Kernels

As stated in Chapter 3, measurement of individual Volterra kernels is not possible, while
equivalent Wiener kernels can be extracted from the measured response if the excitation to
the system is white and Gaussian. These Wiener kernels can then be used to generate the

Volterra kernels.

In the present case, the Wiener kernels of the nonlinear system are extracted by application of

white Gaussian forces f,(r) and  f,(7), one at a time, i.c. first a white Gaussian force
f 1 () with variance A, is applied in the x-direction, while keeping the y-direction force,
f ,(7) = 0. The resulting response (in both the x and y directions), is employed to extract the
direct, x-direction, Wiener kernels and the cross (x-y) kemnels. In the next instance, a white
Gaussian force f,(7) with variance 4,, is applied in the y-direction, while keeping the x-
direction force, f,(7)= 0. The system response, in this instance, is employed to extract the

direct y-direction Wiener kernels and the cross (y-x) kernels.

The system response, in terms of Wiener kemels, is now expressed, in the two individual

cases as —



f1(7) Gaussian white. with variance A, and £ ()=0 :

(=W fi(2). 0]="W]],(2)]

¥ n( T)=",W[fl(2”). 0]_.:.\';,[/[;](2.)] (4.41)
fz(z') Gaussian white, with variance A2 and fl (0)=0:
n(r)=" W[O, fz(r)}:"W[fz(z')]

(4.42)

"‘77(7)-:"'”’[& J}:(T)]: “'W[f—z(r)]

In the above equations

"'W[ /i (r)}:" Wo+ W (oWl [ @ WOLF O]+ . (4.43)

(with x denoting x or y) fori=1or2

The individual operators of equation (4.43) being given in kernel form by

x

"'W("[f(r )] = J“WM(TI)J;}(T“ Ty)dt,
l\nr(’) f(T I J-“; )(Tl’fz)'/_}(f—Tl)ﬁ(r—rz)drldrz'—Al J‘ng)(TZ’TZ)dTZ

Wl f(0) = ! j“ (11,72, 73) /i (r =) [ (1 = 13) [ (r = 73) dry dradry

-3A, I "’(r,,rz,rz)f,(r 1,)dr, dr, (4.44)

-

The relationship between the Volterra kernels of equations (4.7) and the Wiener kernels

above, as in the previous chapter can be shown to be (for a third order response

representation )



xhéi)(flwfz-73)=xw§i)(71, T,T3)
xhén(ﬁ -T2 )'*'Kwéi)(rl 2T2)
Khl(l)(_z.l )=A-w§x)(z.l )+le(8)(rl)

Ky _X K.,
hy="wy+" Wy

with

[+ <]
"w,((’_%) (1)) =-34, _["' wg')(rl 1T9,T5)dT,

x

K)o K (1)

Woz) = ~4, _[ w; (71, 77)d T
—a

Employing the following Fourier transforms,
7@ = [F (@) de
Kntry= [* nwye’”" dw

it

x .
Kl (ry= [¥H" (0, Ye! 1 de
i

o ) .
xwé’)(r‘.rzh | IKW;}')(aJ,,wz)eJ(wlr‘ +w212)da)lda)2

L SR

o o o

B} .
Wi (ry.ryery)= [ ] XD (@1,00,03)e

e S A 4]

and using the relationship

o«
{e/Tdr = §(w), the Dirac Delta function,

-

the responses (4.41) and (4.42) can be expressed as

(4.45)

Hoyty + @372 +@373) gy 4oy, doo,s

(4.46)

(4.47)



n(@)="Wo + [*W(0)F (@)™ do,

-0

0 =)

oo 00
(i) ‘ (o + Trprt
'{I J-xwz (a’lﬂ“’z)F.(“):)F}(wz)ej(m'mz)tdwldwz‘Ai J.sz(')(a)z,—a)z)da;zJ‘

(v i & I i
+ [ W (@01,00,00)F,(0)F(0,)F (0,)e" " 4, dor, do,

00 00 O

—00 ~00

....................................

« (4.48)
}',7(1-)_.,_)’"/0 + I}’Wl(i)(wl )Fi(a)x)ejwlrdwl

=00

+[ I J-yWZ(i)(wl’wz)E(m‘)E(wZ)ej(wﬁwz)rd@ldwz‘Ai Isz(i)(GJ:z,—C')z)daﬂ]
+ [ ] [P (,0,,0)F (@) (@) (@3)e" ) dodo,do,

QU e G0 - 00

- 34, J' j -"H’3(’)(w,,a)2.—~w2)da)ldw;z:!

-k o0

------------------------------------

(4.49)

A complex exponential filter, similar to the one described in Chapter 3, has been used for
measurement of the individual Wiener kemel transforms. Referring to Fig.4.2, the output of

the filter is

(+) _ « Jor]

27 ()= |e (1 -1,)dr

(1) I, fi( pdr (4.50)
= F* (w)e™/*"

and the ensemble averages of the outputs of the circuit are,

67



F;(@)* n(@)

f() o Ky | *n(r)e* n(@)
» - Ve e r,.m--o-m.-m-...—.w—-’. »
Non-Linear System | ¥ n(7)¢>” 77(60% g? = A4, le(i) (@)

F; ()’ n(w)

= 4, (@)

o0
- JITy 1
] JET @A YT,
Gl

20(2)= F ()"

Fig. 4.2 Scheme for evaluating the first order direct and cross Wiener kernel

transforms, Wl‘” (w).



*n(0)z(2) =~’Wo<1"-‘,-‘(w>>e‘f“” + WO @)(F@)F @) @ a0,

{ I 1w @0, )(F (@)F(@,)F; (@))e @21 g, gy

i

—34 0} ?KXW 3 (@, 0,,-0, )<F—, (@)F ((0)>[ Jr@ )y o d a’z}

-4, <I~‘,'(w)>e_j“"’ j:cW:z(i)(co2 —, )dwz}

-0

Qt__.q

/ f .XW (0,0, , @3 )<F_; (0)F,(@,)F;(w3)F" (60)>

= J (W) +@~+ @7 ~w
e n 12T )da)lda),_dw3

(4.51)
< 77(r)~(”(r>> <1~ ((u)> T YW 4+ ij<‘)(w,)<F(ml)F (@) 7O

{“}

A (F @) | yWé"’(wz,—wzwwzJ

0

K

Wi, @, )<F (@,)F, () F, (a))> T @+0:-0) g dew,

L

+ { f [ f"W;")(a)} , W, W3 )<Fz (@ )F_,. (0)2)1?1(0)3 )F?(CO)>
x /T2 g dodao,

347 W‘"(w,,wz,—-a)z)<F(wl)F (a))>e G "’)dco,dcoz}

P

(4.52)

Since f,() is stationary Gaussian white noise with zero mean and variance 4; , the Fourier

transform, F (@), is also a stationary Gaussian white noise process and employing

equations (3.30) from the previous chapter for ensemble averages of the products

transformed functions, equations (4.51) and (4.52) can be reduced, after some algebra to



(*m(0z(0) = 4, W (@) (4.53)
<y 7 r)z(')(r)> = A YWD () (4.54)

However, due to the equivalence of time and ensemble averages, the ensemble average

< n( r)z("(r)> can also be written as,

(020 = tim = (02 (e

T==T _112

= F (@) *n(w) (4.55)
Equations (4.53) and (4.55) give
AW (@) = F (0) *n(w) (4.56)

from which the expression for the first order Wiener kernel transform is obtained as

W) = Fl () “n(w)/A, (4.57)
Similarly,
J’u»'l"’(m) = }f;."‘(m) "n(w)/ 4, (4.58)

Since 7 takes values 1 and 2 the direct kemnels J‘W,“)(co), Y Wl(z) (w) and the cross kemels
x Wl(z) (w). "'H’l(”(w) can be extracted from the measured responses *7(@), ”7(w) and
the applied force ( Fj(w) and its variance Al or F,(w) and its variance A2 ) , through
equations (4.57) and (4.58).

For measurement of the third order kernel transform, a circuit involving three exponential
delay filters, as shown in Fig. 4.3, is considered. The output, z(i)(r) , from the exponential

filters is



(e ne) 2

Ji(1) > Fi(w) Unknown " 2 )29 (1)
T 7] Non-Linear System ¥ T](T)(—)y () )
ié Y m(r)z 9 (7)

m N

o N

[+ 4 [ ‘m -
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D (@)= [e /1 f(r—1,)dr, Ie J“’mf(r-q)drz J'e T3 f (1 —13)dr4

é
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F(~o)Fi(-wy)F (- a)3)e'1(“’1+“’2+a’3)f 459)
and the ensemble averages of the outputs of the circuit are
<.x 77(7)2“) ('[)> = [Aizlxn,l(i)(wl )5("'&)2 _ w3)ej(—a)2-—a)3)r

+xn/1(i) (0)2 )5(“&“ _ 603)61'(—&)1—:03)1

v , (4.60)
+ W (03)6(-0, —a)z)ef("“’l"“’Z)’]]
3ot
+[6Ai W;‘)(a)l,wZ,G)3)}
However, the equivalence of time and ensemble averages gives
< n(7)z" )(r)> = hm — I (1) x)dz,
©T-112
= F (~0))F (~0))F (w3) "n(0, + 0, +@3) (4.61)

Equations (4.60) and (4.61) give the expression for the measurement of the third order

Wiener kernel transform as

1
xW (a)l @y ,(03) = ""”“""3“'[!‘ (0)1)1; ((l)z)F (603) T]((Ol + w, +Q)3 ):l
64;

- 6; [xurl(l) (a)l )5(0)1 + 603 )+xn,l(i) (0)2 )5(&)1 + 603 )+Iu/l(i)((o3 )5((01 + o, )i|
i
(4.62)
similarly we can have,

yW;”(ﬂ)l,C!)z,w‘;) - _”5_ F;*(wl)}‘-;‘(ﬁ)z)}::*(w:;) )’n(a)l + Wy +(l)3)jl
647 -
{

- g.;_ YWD (0,)8(0; + @3+ W (0,)8(@, + 03) W (3)8(an + @ >]
i L.

(4.63)



. . . X (1) , :
The third order kemel transforms, W3 (@),0,,0,), ’W;')(wl, ,,0;) form multi-

dimensional surfaces on the (@,,w,,w;) axes. Measurements are made for special
trispectral kernels with @) =, =3 = @. As stated in the earlier chapter, these kernels
are functions of only one variable @ and are much easier to compute and interpret. For such
trispectral kernel transforms the expressions (4.62) and (4.63), for their measurement, reduce

to

. 1 [ f-. i
WD w,w,w) = —— {F (@ }}’ 3w
, (@ ) pyrikd ) 0l ) 64

i -

[ M @)@ @8 @) W (@)6 (“’)}

. 1 [/ 3 . .

() - =¥ oV Y i Al i

W, (m,w,m)_-g;ﬁ {!i (w)} *1(3w) —-G—Z[yWI()(a))d(a))+}ﬂ'l()(a))5(w)+le()(co)d(a))]
Al 1 64

(4.64)

4.4 Parameter Estimation

The third order Special Tnspectral direct  Wiener kernel transforms JcW;l)(a),co,co),
}'WJZ’((u,m,m) and the cross-kernel transforms "W;z)(a),w,w), yWa(l)(co,co,a)) are

extracted from the measurements of the responses “7(3w), Y n(3w) and the applied force
( ﬁ}(m) and 1ts variance Al or i’z (w)and its variance A ) ). Subsequently, for a third order
representation of the system response, noting the equivalence between the Volterra and
Wiener kernels (cquations 4.45), the third order Special Trispectral Volterra kernel
transforms can be computed as -

direct-kernels:

"‘Hé”(w,w.co):"W;” (w.w.0)

_ .é.‘%[{f‘(w)}’ *;,(3@)} o PO @sn I @ @ @]

I
J'H;Z)(‘mm a),w)z"’u';zy(m,w,w)

gﬁ;[{ﬂ*(w)}: n(w)]— o, [’W(z)(a))5(a))+yﬂ( ’(w)a(w)+yW,( )(a))E(w)]
2

E=



cross-kernels:

’H;z) (0, o, m)=’W;2’(m. @, 0)

—- .”»lm_,, {F * F" 1 Xy (2
i 6.43[ 2 "Ow)}a?[ W @@ I 0)50)+ W @)5()]
-"HB(”(a),a),a))z‘*'ﬂ'(”((u 0.0)
*6*1 [{ﬁ @] n(3w>}—7[yW“<w)5(w)+ # P @3@) WO @)@
(4.65)
Similarly from equanons (4.45), the expressions for the first order Volterra kemel
transforms, in terms of the extracted Wiener kernel transforms become

direct-kernels:

“H (@)=" W @)+ "B} (@)

YH® (0)=* W (0)+*#?) (0)
1 1 1(3)
cross-kernels:
*HE (0)="W* (0)+ "B (@)
1 I 113)
Yy yye(h)
h(I ()= Hl (w)+ Hm)(m)
(4.66)
where "W ) 3 (@) and B (" 3, (@) , with i taking a value 1 or 2, are kemels derived from the
third order kernels through the following expressions.

o0
xpr() oo [ xgr(t) _
Wl(a)(w)- | ”3 (co,coz. a)z)da)2 |
- (4.67)

o0
§277400) — Yy (4) -
Wl(z)(w)”_i LAMENOS , )Mo,

The linear parameters can be obtained from the above estimates of the first order Volterra

kernel transforms, "H‘(”(w), yHl“)(a)), le(z)(a)), "Hl(z)(co). Noting - the algebraic



expressions of these kernel transforms in equations (4.23), the ratios of the estimated kernel

transforms can be expressed in terms of the linear parameters as follows
*H(w)/ *HM (@) = (~0? + 2j8,0+ lf},)/(—/lf,)

HP ()1 *HP (@)= (-0 +2jE 0+ 1)/(-AL) (4.68)

Y L L . N
The parameters A o Arxs A 5 & , and & are estimated through application of a curve

fitting routine.

Nonlinear parameters are computed from the estimates of the Special Trispectral Volterra
Kernels, "‘Hé”(m,m,m) . "H;z)(w,w,w), yH;')(co,w,a)), yH3(2)(a),a>,a)) . Noting that these

kernel transforms are estimated by application of a single white Gaussian force at a time, the
expressions (4.40), for the third order Volterra kernel transforms, synthesised in Section 4.2,

also get reduced, in the two individual cases, to

/1(7) Gaussian white, with variance 4, and fz(r) 20 :

1 N =1,1,] N -1 N 2-1,1,1 N 2-1L1,1
“HMN(0,0,0) = Ay, W34 AL T AL (P ) + AL, ()

.t N oy N L el oN 2-1L1y , 4N 2-11,
YH (. 0,0) = A5 (W30 # AL M) # 4, OV T+ A 00T

J> () Gaussian white, with variance 4, and f(n)=0:

/ - N 1-2,2.2 N 2-2,2,2 N 2-2,2.2
HNo,0.0) = AV, (597222 + A0 (T2 + 45, (T + AL (YY)

: Lol N opql-222y, gN 2-222\ , N (ymg2-222
YH® (,0.0) = AN, (W32 + AL (YT + A, PO + 4, (T

(4.69)

Substitution of the estimated third order kernel transforms on the left-hand side of the above,

gives four equations,



1 W p X 1 .
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1 pe ¥ ‘\3 ) l x -
a;{{ﬁz (@) 71(3(0):} “ ﬁ;[yw,(z)(m)&w)] =Ag W22 4 20 (w2
~ L

+/1}A; (}gv\{,32—2,2,2)+A;Vx(ﬂly32—2,2,2)
1 T oW 3 X 3 i x / - -
g;g{{fz ((o)} r7(3w):}-3~*A—2-[ W,""(m)&(w)]zlﬁx (W3 22) + A (P22
2
+/1f;, (X)‘\P32—2,2,2)+/%;V“ (xx\Ij32—2,2,2)

1 oo ‘)\3‘ 1 N _
E;@,iw ()] r;(3m)}--é-z;[lem(m)c?(a))]::/12" (G D E A s )

2 H'\Ifz—l,l,l ’ 2 Vx\ffz—l,l,l

which can be solved simultancously for the four unknowns, namely the nonlinear parameters,

N Al ) A\
’%m . /2‘)1 . ’J"u . ‘)'y,x .

4.5 Computer Simulation

The procedure is illustrated through numerical simulation of the response for the

nondimensional coupled equations (4.3). The forcing functions in the equations are
normalised. zero mean random forces, f,(7) and f,(r). The excitation forces are
simulated through random number generating subroutines and are normalised With respect to

the maximum value of f}(f). A typical sample of such excitation is shown in Fig. 4.4(a).
Fig. 4.4(b) shows the corresponding power-spectrum of the excitation force averaged over

2000 samples.

Owing to the statistical nature of the problem, the procedure is illustrated for various sets of

linear and nonlinear stiffness parameters and damping factors. Various case studies have
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been designed to study the influence of these parameters and the errors involved. The
following scheme is adopted.
e Keeping the linear parameters, lﬁ,,lfy,/lﬁy (with Af,x = zﬁy ), fixed, the relative values

of the nonlinear parameters A’;’x and /lﬁ",y are varied.

e Kecping the nonlinear parameters, l’; and /lﬁ,'y, fixed, the relative values of the linear
parameters /lir , lﬁ'y , /If;}, (with Af, = Af,y) are varied.

e For computational ease the nonlinear parameters lfy and /1};; are taken as zero.

e Damping is fixed and taken to be identical in the two directions, ie. £ _ = &,y =0.01.
(The variation in the values of damping is taken up later)

The response is computationally simulated by solving the governing equations through a

standard fourth-order Runge-Kutta subroutine. These responses are fed as inputs to the

parameter estimation algorithm. The estimated parameters are compared with those

originally used for the simulation of response.

4.5.1 Case Study 1 (a) ‘
In the first instance, the nonlinear parameters are taken to be numerically equal, for response
simulation. The direct linear parameters are also taken to be identical. The linear cross-

coupled parameters are taken as half of the direct linear terms. The numerical values are
given below

,(7) = normalised Gaussian white, as shown in Fig.4.4(a) ; fo(1)=0;
Ay =AY, =0.10

Ap = Ay =0.0

A= A% =1.00

A% = A5, =050

f.x.t = g}{y =0.01



With the above values, the simulated nondimensional responses, * 7(z), and *7(7) are
typically shown in Figs. 4.5 (a) and 4.5 (b). These responses have been numerically
generated for 4096 number of instances in the nondimensional time (7) range 0-2048. 2000
number of such samples of response are obtained from 2000 different samples of the
simulated random force. (The influence of the number of samples in the ensemble is

discussed later) Ensemble average of the power spectrum of the responses can be seen in Fig.
4.6 (a) and 4.6 (b).

These spectra are fed as inputs to the parameter estimation algorithm.

Estimates of Lincar Parameters

The first order direct Volterra kemel transform, *H. 1( D (@) and the first order cross Volterra

kemnel transform, * H ,( h (@) , Figs: 4.7 (a) and 4.7 (b) respectively, are computed, using

equations (4.66). These kernel transforms exhibit peak responses at frequencies equal to

0.112 and 0.195, which correspond to two critical frequencies (refer the denominators of

equations (4.23)).

@, = [1/2(A%, + D)% (A5, +1)° +4(,1{;_f. S0 k) hb 4.71)

~ Y .
The linear parameters AL, )Lﬁ,x s Ay &,y and &, are computed from these direct and cross

kerne] transforms, as explained in equation (4.68), through routine modal analysis procedures

(Ewins, 1984). The linear parameters, thus estimated are
Ai, Xi;, = (),1598 (cycles/ 1)
= 1.0046 (rad/ 7)
Ay = AL, =0.0799 (cycles / 7)
=(.5025 (rad / 7)
£ =&, 50015,



2.5

Nondimensional response

Dimensionless Time

Fig. 4.5(a) Typical sample of the response in x-direction: Case 1(a).

Nondimensional response

Dimensionless Time

Fig. 4.5(b)  Typical sample of the response in y-direction: Case 1(a).
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The exact values of the above parameters are those used as input for numerical simulation of
the response. While, linear stiffness parameters can be seen to be estimated with a good
degree of accuracy, the error in the damping estimates is higher. Damping has been estimated
by applying the standard half-power method on the first order kernels. The curves of F igs.
4.8 (a) and 4.8 (b) show the errors incurred in the estimate of *H{" (@) and ” HY (@) due
to the statistical nature of the Fast Fourier Transform computational procedure and the finite
length of samples (4096 in the present case). (The exact values of these kernels are those
obtained from the expressions (4.23), after direct substitution of the numerical values of the
linear parameters employed for the simulation of the responses). The normalised random
error, as known, can be seen to be the maximum in the vicinity of the peak responses at

critical frequencies @, . . . Since the numerical error is higher in the vicinity of the peaks, the

ny2
error in damping estimates, obtained by application of half-power method about the peaks,

will be higher than those in the stiffness estimates.

The first order kernel transforms *H ](2 )(w) and *H 1(2)(0)), estimated by applying white
Gaussian excitation in the y-direction, while keeping that in x-direction as zero, are shown in

Figs. 4.9(a), (b) respectively.

Estimates of Nonlinear Parameters

As observed from Figs. 4.8 (a) and 4.8 (b), the statistical errors in the estimate of *H{ " (@)

and 7 H ,(‘) (@), the error is less than 6%, in the frequency range 0.0 - 0.10, for the ensemble
size of 2000. It can be readily inferred that the normalised error for the higher order kernels

. . . N
would show a similar trend and the error, in the estimate of the nonlinear parameters 4, and

/1%, , can be expected to be less in the frequency zone 0.0 - 0.10.

- -1,1,1
The third order kemel factors, ™ ‘1’31 L1 (v,0,0), 7Y¥; (v,0,0),
»” ‘P}'”" (w,0,0),” ‘I’g"’”(a),a),a)) , synthesised from first order kernel transforms in

accordance with equations (4.35) and (4.39) are shown in Figs. 4.10 (a)-(d).
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The system response is then processed to extract the set of third order measured kernel
L xpp(l) 1 7
transforms *H3 (@,0,0), * H (0,0, ) (with  £i(r)#0 and f,(r)=0) and

HP (0.0.0), "HP (0,0,0)  (with f,(r)%0 and 7 () =0).

L) ) > > 1 - 3 N N
However, since the nonlinear cross-coupling terms, A", A,y are taken to be zero, only one
of the above sets, of third order kernel transforms, is sufficient for parameter estimation
(refer equations 4.70). Presently, the first set *H g')(a),a),a)), YH gl)(a), ®,®) , as shown in

Figs. 4.11 (a) and 4.11 (b), is extracted for use in parameter estimation. While the first order
kernels are estimated in the entire available frequency range 0.0 - 1.0, the third order kernels,
involving a 3w factor, have to be restricted to one-third of this frequency zone (i.e. 0.0 -

0.33). as mentioned in the previous chapter. It can be observed, from the figures, that while
the measured third order kernel transform * H 3(1)(60,(0, ®) is reasonably accurate in showing

the harmenic at @, , /3 (at nondimensional frequencies = 0.037 and 0.067), the

identification of the harmonic at @ ( at nondimensional frequencies = 0.112 and 0.195)

1,2

is weak, due to higher statistical errors, mentioned earlier. The estimation of nonlinear

parameters /l';', and li’,v , from these kernel transforms, is therefore restricted to the

frequency zone of 0.0 - 0.10.

The estimates of the nonlinear parameter A%, and A);,y, obtained in accordance with the

relationship (4.70), are shown in Figs. 4.12 (a) and 4.12 (b). A fourth order polynomial curve
regressed through the estimates of these nonlinear parameters , over the frequency range, is

also shown in these figures. The mean values of the estimates are found to be
N
A = 0.098
N
Ay = 0112
The exact values of the above nonlinear parameters are those chosen for response simulation,

that is, l:t = l:’,} = (.10 . The nonlinear parameters can be seen to be e§timated within the
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correct decimal orders, with the errors being 2% and 12%. The primary source of error is the
restriction of response representation to third order kernels only. This has been done to keep
the computations to a manageable level. Inclusion of higher order kemels (5", 7 order) in
the response representation can be expected to improve the accuracy of the estimates at
increased computational effort. Another source of inaccuracy in the estimates is the finite
length of samples and the ensemble size. The nondimensional time interval for sampling has
been taken as 0.5 and 4096 samples are collected for an ensemble, for this numerical
simulation which give a frequency bandwidth of + 1.0 cycles/ 7 and a frequency resolution
of 0488 x 10~ cyclcs“/ 7. Increased sample size and/or increased ensemble size can be

expected to yield more accurate estimates.

4.5.2 Case Studies 1 (b) and 1 (c)
In the case study 1 (a), the values of the nonlinear parameters, Afx, /l];; were kept identical

(= 0.1), in response simulation. As the next cases, dissimilar values of these parameters are

chosen for response simulation and their subsequent estimation from the simulated response.
Casc1(b): AN =01, 2\ =10
a : w =015 e
Case 1(c): Al =017  A),=001
- - xx <A Wy A
The remaining parameters remain the same as in Case 1(a).

The results obtained are shown in the figures listed in Table 4.1

Table 4.1 Figures of Cases 1 (b) and 1 (c)
Parameters Case 1 (b) Case 1 (c)
Figs. 4.13 (a)-(d) | Figs. 4.17 (a)-(d)

“HY (@), H{" (@) *H" (), H{ (@)

1-11, Y 2
@b e 0,0), Y,

e, 0,0),

9L Ll Figs. 4.14 (a)-(d) | Figs. 4.18 (a)-(d)
P, 0,0), P ¥ (0,0,0)

ngl)(a),a),a)), yHél)(w,w’w) Figs. 4.15 (a), (b) | Figs. 4.19 (a), (b)

Figs. 4.16 (a), (b) | Figs. 4.20 (a), (b)

N N
2’”’ lmv
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Fig. 4.13 Estimates of the first order direct and cross-kernel transforms: Case 1(b)
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Fig. 4.17 Estimates of the first order direct and cross-kernel transforms: Cage 1(c).
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Fig. 4.18 Third order kernel factors: Case 1(c) (Contd.)
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Fig. 4.18 Third order kemel factors: Case 1(c).
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Fig. 4.19 Third order measured kernel transforms: Case 1(c).

102



8
™

MVMA\/‘V‘ YN Y
» VAPV vv'"vasm,. |

"

Estimated lambda (dB)
o

&
T

e -

0.01 0.

Nondimensional Frequency

Fig. 4.20(a) Estimate of the nonlinear parameter, iﬁ;: Case 1(c).

1

Estimated lambda (dB)
o
W—

0.01
Nondimensional Frequency
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The parameter estimates are given in Table 4.2

Table 4.2 Parameter estimates in Cases 1 (b) and 1 (c¢)

Parameters | Case 1 (b) | Case 1 (c)
/1’;“(=/1§,y) 1.109 1.005
li} (= iix )y | 0499 0.503
¢ (=§yy) 0.016 0.011
/'L‘:, 0.089 0.088
l; 1.18 0.012

In these cases too, the linear stiffness parameters are estimated accurately. Damping
estimates involve higher errors, due to reasons cited earlier. The estimates of the nonlinear

parameters show an error between 11-20%.

4.5.3 Case Study 2

For the next set of illustrations, the nonlinear parameters Afx and }.:‘ are kept fixed at 0.1,

as in Case Study 1 (a), and the linear parameters are varied. In all the Cases 1, the direct
linear stiffness parameters were chosen to be identical (= 1.0) and the cross-coupled stiffness

parameters were taken as half of the direct ones (= 0.5).

In Case 2 (a) the following sets of values are now chosen for response simulation and their
subsequent estimation from the response.

L _qop. L _5q. L _ L _
Abo=10; b =200 AL =2L =10

In Case 2 (b), the negative cross-coupling effect has been incorporated, with

L L _qqa. L _ 4L _
Ak =4t =10 At =1k =-050

The figures for these two cases are listed in Table 4.3.
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Table 4.3 Figures of Cases 2 (a) and 2 (b)

Parameters

Case 2 (a) Case 2 (b)

*H{ (@), *H{" (@) *H{(0),*H? (o)

Figs. 4.21 (a)-(d) | Figs. 4.25 (2)-(d)

xx s 1-1,1,1

3 (G), @, Cl)), v W;_l’l’l(w,waw)a

1-1,1,1 w2
& (@,0,0), " ¥ (0,0,0)

Figs. 4.22 (a)-(d) | Figs. 4.26 (a)-(d)

"H§”(a),a),a)), yHé”(a),co,(o)

Figs. 4.23 (a), (b) | Figs. 4.27 (a), (b)

N N
AN, AN

The estimates are given in Table 4.4.

Figs. 4.24 (a), (b) | Figs. 4.28 (a), (b)

Table 4.4 Parameter estimates in Cases 2 (a) and 2 (b)

Parameters | Case 2 (a) | Case 2 (b)
At 1.01 1.03

A5, 2.03 1.07

AL ik f A 9Re2 -0.495
Eu=&,) 10013 0.012
ar 0.078 0.108
P 0.107 0.111

The estimate of the direct linear term l];cx has been made by replacing term 1 on the r.h.s of

equations (4.68) by /?,f;, itself. It can be seen from Table 4.4 that, in Cases 2 (a) and (b),

where the direct linear stiffness terms are dissimilar (unlike Case 1 (a)), the pattern and

accuracy of estimates is similar to the previous cases. It can also be noted, in Case 2 (b), that

negative cross- coupling effect has been correctly identified.
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Fig. 4.21 Estimates of the first order direct and cross-kerel transforms: Case 2(a)

(Contd.)
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(d) First order direct kernel transform, ~ H¥(w).
Fig. 4.21 Estimates of the first order direct and cross-kernel transforms: Case 2(a).
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Fig. 4.22 Third order kernel factors: Case 2(a) (Contd.)
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Fig. 4.22 Third order kernel factors: Case 2(a).
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Fig. 4.23 Third order measured kernel transforms: Case 2(a).
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(b) First order cross-kernel transform, *H 1(2) (w).

Fig. 4.25 Estimates of the first order direct and cross-kemel transforms: Case 2(b)
(Contd.)
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Fig. 4.25 Estimates of the first order direct and cross-kemnel transforms: Case 2(b).
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Fig. 4.26 Third order kernel factors: Case 2(b) (Contd.)
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Fig. 4.26 Third order kemel factors: Case 2(b).
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Fig. 4.27 Third order measured kernel transforms: Case 2(b). -
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Fig. 4.28(a) Estimate of the nonlinear parameter, Z],‘;: Case 2(b).
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Fig. 4.28(b) Estimate of the nonlinear parameter, lﬁ’,y: Case 2(b).
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oute hedad i Al S A4

Apart from the linear and nonlinear stiffness parameters, other nondimensional parameters
contained by the governing equation (4.3) are the damping ratios. All the previous case

tudies h i .
studies have been carried out for 1% damping (§n=§yy= 0.01). Numerical simulation is

carried out to further, investigate the estimation procedure for a lower damping, with

£ n=§”,= 0.001 (keeping the values of the remaining parameters the same as those in

Case 1 (a) ). The parameters and the corresponding figures are given below
) 1
*HO (w), ?H (0) *HP (@), *H? (0) Figs. 4.29 (a)-(d)

1-1,1,1 -
= gl-Ll (o, 0,0), YY" (0,0,0)

- _ Figs. 4.30 (a)-(d
yx\_l_;; l,l,l(w,w,a))’ yy\P32 1’1’1(60,60,60) g (a)-(d)

XHél)(a),a),a)), "Hy)((o,a), ) Figs. 4.31 (a), (b)
Aer A%, Figs. 4.32 (a), (b)

The estimates are:
A=, 1.07
AL (=2%) 0488
S (=6,,)  0.002
AN 0.150

A!
A, 0.170

The estimates can be seen to be sensitive to damping and comparison with the results of Case

1 (a) shows that, the results are less accurate in the present case, with lower damping.

Averaging over increased sample and ensemble sizes can be expected to reduce the statistical

errors in the extracted kernels and improve the accuracy of the estimates.

118



15

8

First order kernel transform (dB)
&
T

0.01 0.1 1

Nondimensional Frequency

(a) First order direct kemel transform, *H{ ().

15

:

First order kernel transform (dB)
&
H

|

0.01 0.1
Nondimensional Frequency

b) First order cross-kerel transform, *H{> ().
(b)

Fig. 4.29 Estimates of the first order direct and cross-kernel transforms: Case 3

(Contd.)
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Fig. 4.29 Estimates of the first order direct and cross-kemnel transforms: Case 3.
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Fig. 4.30 Third order kernel factors: Case 3 (Contd.)
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001 01

Nondimensional Frequency

Fig. 4.32(b) Estimate of the nonlinear parameter, /1?’0,: Case 3.
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4.5.5 Influence of Ensemble Size

It was observed that increasing the ensemble size beyond 500 has insignificant influence on
the first order estimates, the influence on the third order estimates is investigated for
ensemble sizes 500, 1000, 1500 and 2000. The parameters are kept the same as in Case 1 (a)

and the results are arranged, for clarity, as given below

Ensemble Size
500 1000 1500 2000

pasy \P;—l,l.l ((l), Cl),a)),
2-11,
Yt g 0,0)

*H (0,0,0)

Fig.4.33(a) Fig. 4.34(a) Fig.4.35(a) Fig. 4.36(a)

-t w,0),

. Fig. 4.33(b) Fig. 434 Fig. 435 Fig. 4.36
)0;\};32 l,],l(a)’w‘a))’ g (b) g (b) lg (b)

YHY (0,0.0)

It can be seen from the above figures that the third order Wiener kernel transforms,

*H é” (w,0.0) and *H 3(”(60,(0,(0) get refined with increasing number of samples in the

ensemble. However, the refinement in the kemel factors, ™ 3]'1’” (w,w,®) etc., which are

synthesised from first order kernel transforms, is marginal. The ensemble size was not

increased beyond 2000, in the present study, due to data storage limitations of the computer.

4.5.6 Influence of Measurement Noise
The influence of measurement noise, which can be expected during an experiment, in the

measurement of the excitation force and the response signals, is studied by contaminating the
simulated force and response signals with 5% simulated random noise. The parameter
estimation algorithm was found to be robust in the presence of this noise and the change in

the estimates is marginal. For illustration, only the third order kemel factors,

W‘P;’I'“(a),a),a)), %4 Wf'l’l’l(a),a),w) and the third order Wiener kernel transform,

Y H_f,”(a),a),co), are shown in Figs. 4.37 (a) and 4.37 (b). The data corresponds to
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Fig. 4.33 Influence of sample size on third order estimates: Case 1(a)

(sample size = 500).
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Fig. 4.34 Influence of sample size on third order estimates: Case 1(a)
(sample size = 1000).
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Fig. 4.35 Influence of sample size on third order estimates: Case 1(a)

(sample size = 1500).
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Fig. 4.37 Effect of measurement noise on third order estimates: Case 1(a).
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Case 1 (a). The figures show the results for two different situations - (a) no measurement
noise and (b) 5% random noise in both i. e. input as well as response. (The noise signals are
uncorrelated random signals with rms values equal to 5% of the rms values of the excitation
force and the response) . In Figures 4.37 (a) and 4.37 (b), the frequency range has been split
into two. Fig. 4.37 (a) corresponds to the frequency zone, of interest for parameter
estimation, 0.00-0.03 cycles/ 7 , on a magnified scale. The remaining portions of the curves
are shown in Fig. 4.37 (b).

4.6 Remarks

The salient features of the parameter estimation procedure for a rotor-bearing system, with
cross-coupling effects in the bearings, are the definitions of cross-kemels, which upon
convolution with the excitation represent the response in terms of Volterra or Wiener series.
For the nonlinear two-degree-of-freedom problem, Laplace transforms are employed to
derive expressions for the first and higher order direct and cross-kernel transforms. The
numerical illustration reveals satisfactoq performance of the procedure for various
nondimensional parameters of the governing equations. Such a study can be usefully
employed for design of experiments, The rotor has been treated as a rigid body in this

chapter. The case of flexible rotors is discussed next.



CHAPTER 5

PARAMETER ESTIMATION IN FLEXIBLE ROTORS

The case of parameter estimation in flexible rotors is considered in this chapter. In the
analysis so far, the rotor is treated as a rigid body and the shaft flexibility is not accounted
for. The treatment in this chapter incorporates the influence of shaft flexibility. An
attempt has been made to reduce the algebraic complexities by adopting the same rotor-
bearing configuration as in Chapters 3 and 4. However, in order that there is no loss of
the generality of approach, equations have been written in matrix form. The shaft
flexibility has been included in the analysis through influence coefficients concepts. The
shaft stiffness is taken to be purely linear with nonlinearity present in the bearing stiffness
terms. Bearing cross-coupling effects which have already been discussed in the Chapter 4
has not been included in the analysis. Similarly, damping is treated to be linear with no
cross-effects. The parameter estimation procedure follows previously described route of
deriving expressions for the first and higher order direct and cross-kernels. These are to
be extracted from the excitation force and response measurements. Third order kernel
factors synthesised from measured first order kerne] transforms are processed along with
the measured third order kemnel transforms' for nonlinear parameter estimation. The

procedure is illustrated through numerical simulation.

5.1 Governing Equations And Response

The equations of motion for a balanced rotor with a centrally located disc on a massless

flexible shaft supported in bearings, shown in Fig. 5.1 are written as

. . L \
m 0 0% Gy 12 Sz ||*® kyy + Ky, ki , ki3 |[x
0 m, 0 fz +|Cy Cpp €23 x.z + kz] kzz + kbz k23 Xy ¢
0 0 my|(%;] |c3 €32 C33]l%3 k3 ks, k3 |1x3)

ky 0 0f[x}] [A®)




/

(O
o
/ X9 l; kgz,kgz
R
S /
2N )/
& my

4 > -
/ m

L N
kb1 ) kb1

X1V

Figure 5.1 Flexible rotor in bearings.
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In equation (5.1) my, m,, m; are the system masses at stations 1, 2, and 3 respectively.
The external white noise excitation provided at the stations 1 and 2 are f1), f,@)
’ 2 -
L gL ) . .
kb, , kbz are the unknown linear stiffness terms of the two bearings and k,fl' and kb’;/ are

their unknown nonlinear stiffness terms. The shaft stiffness parameters are represented by

k; terms, which are defined as the resistive force at the ith station corresponding to a

unit deflection at the jth station, with all other deflections held to zero. The values of the

k; terms can be obtained from the Strength of Materials formulae. ¢;;,c,,,¢3 etc. are

linear damping terms .’

Defining

T=pt, p=vky3/mg;

) =x/"X, "Xy = Fo, [0’ ;

& =c,/2mp, A, =k; Imp*; ij=1,2,3

and (5.2)
fi(0) = (7)) Fax, » A =kk impP LAY =k F i pts

fori=1, 2

and considering only the direct damping terms; in order to keep the algebra simple

equation (5.1) reduces to

Mn" & 0 0| |Ant 1&’5, A1y Az || UL
2prbae2l 00 & 0 KPR+ Ay Ap + /1{52 Ay K27
Bn" 0 0 &= A3 A3 Az || 1

63
a0 ol [Ai()
+| 0 lﬁz 0R2n’ =1/
0 0 O0f=7 0

V"

7

The solution of the equation (5.3) is represented in terms of Volterra operators as

“n(r)="H| /(). />(1)] = IRAIIGYAG) (54)

n=1

with x denoting x,, X, Or X3.



Further,

“H[A1(0), (D" Ho+ 2 HOUL(O1+ Y “Hi (07,0

1=1.2 i=1,2;j=1,2

ijk)p 7 7 7 )
+ D CHEOF(, () f (D )
i=1,2:j=12:k=12
and the individual operators are given in kernel form by
*HOF, ()] = I"'h{”(r)f,(r—r,)dr, for i=1,2
CHEOF (. T, @1 = [ [*B @) (- 1), (- 1y)drndr
2 5.6)

for i=12; j=12

CHPIO 0. T L )= [ RO (uns ) fie - ) f (e m) fi(r - 7)

X dz, dr,d1, for i=12; j=12; k=12

For convenience, writing the Volterra operators as
K (z) KH(i)[f"(z_)]
(1, i,
X i) =% H 1)[}“(2_) f,(f)} (5.7)
SRR (SR PAC WAL AC]

the response of equation (5.3) can be.written as

“pry= 3 <nil+ Syl + R St — (5.8)

i=1,2 =1,2,y=12 i=1,2;)=1,2;k=1,2

5.2 Synthesis of Higher Order Volterra Kernel Factors

The Volterra operators are now determined on the same lines as in the previous chapters.

The excitation forces f 1(7), fz(r) are replaced by cfl(r) and
ponse of the system, becomes

cf,(r)respectively, ¢

being a constant. Noting equations (5.6), the resulting res

“mr)= 3 ¢ nit+ 3t *y () 4+ 5 o i (5.9)

=12 1=1,2,y=12 i=1,2;j=12;k=1,2



Substituting equations (5.9) and derivatives in equations (5.3), one gets

i () 2 x ()Y 3 i k)
=12 i=1,2;j=1,2 i=1,2;j=1,2;k=1,2
Xz (1) 2 x ', 1\ Lo e
DI D W et S S %2 i) ||
Li=1,2 i=1,2,j=12 i=1,2; j=1,2;k=1,2
x3 (i) 2 x3 (i) 3 k)Y
ZC 771 + ZC 3772 j) + Zc 1'377§l,], )
_i=l,2 i=1,2;j=1,2 i=1,2;j=1,2;k=1,2 ]
Zc x (l) + ZCZ x (l,j) ZCB x ngi,j,k),
i=1,2 i=1,2;=1,2 z—l,2;j=l,2;k=1,2
Sn 0 0 7
x l) 2 x i 3 [ kY
+2/ 0 &, 0 [ e+ ¥ e gl >c? x2plhik) f
o 0 | i=1,2 i=1,2;/=1,2 i=1,2;7=1,2;k=1,2 ]
&33 -
ZC X3 (1) + Zcz X3 (’i.’) + Zc3 x377§13_,’k)
| i=1,2 i=1,2; j=1,2 i=1,2; j=1,2;k=1,2 N
J
3
ZC X nl(l) L Zcz X nél,j) + Zc3 x ngl,_[,k)
-, i=1,2;521,2 i=1,2;j=1,2;k=1,2
A1 + 2 Ay A3 i
b [ k Z X2 )y Zcz x5 () Zc3 xzn(i,j,k)
-+ /12] /{22 + Ab’) /123 < < 77] 772 ‘ 3 ’
- L i=1,2 i=1,2;j=1,2 i=1,2; j=1,2;k=1,2
A3 A3z Az ||
v .. " ‘,k
ZC x3771(1)+ ZCZ 13”§"J)+ 263 J‘377:("11 )
=12 i=1,2;j=1.2 i=1,2; j=1,2;k=1,2 ]
3 N
' 2 x . (i,)) 3 x,,(1,).k)
Serpie Yt gyly ¥ g
i=1,2 i=1,2; j=1,2 i=1.2;y=1,2;k=1,2
Ay 0 0 e o] h(@)
. 2 x3,.0i.)) X2 bl =
+ 0 Ay 0f ZC” R NSl S D Nt ¢ =01/2(7)
1=1,2 i=1,2;j=1,2 i=1,2;y=1,2;k=1,2 i 0
0 0 O}~ -3
3 X3 (’;Jvk)
ZC x3 (t)+ Zc2 X3 (:_1) Zc n
i=1.2 i=1,2; j=l 2 l"],21j=l,2;k=l,2 .

(5.10)



Summing up the responses of equal order, as follows

I order response Z x (')
i=12

II order response *n, = Z x ,751’,1')
i=1.2;j=1,2

III order response “n, = > (1K) ke being X1,X,X; (5.11)
i=1.2;/=12k= 12

Noting the following symmetry of kernels (Schetzen, 1980)

xr](zi,j)zrﬂ(zj,i); _ xn(lu) KU(J'J) xn(JJJ) . etc. (5.12)
and using equations (5.11)-(5.12), equations (5.10) are written in condensed form as,
r[c x‘n;+62 X]n; +c3 Xlﬂ;]\ 5” 0 0 _ r[C x]n;+c2 1177'2+c3 xln;]\
<[c 2t e? g aed 2l o £y O Jle = +c? 2y 275 |4
[c J‘377;'+c2 "377;+c3 "377;] 0 0 &5 [c B+t B, +cd x377;-
([ X 2 x + 3 x ]\
A1 +'11L4 A A3 ,C e e 773.
2 3
| Age (Ayprig Ay Rlem Ae” Bmpte By
A3 A3 A33 c B, +c2 By, 4+ By, |
. [CX] +c2 X1 31’]77]3 _ .
PTG BT | A Jre A@)
+ 0 Eg 0 <[c 2 +c? 2, + e ’2773]3r=c L)
0 0
0 0 [C x3771 +C2 1377 3 13773}; J

(5.13)
Equations (5.13) are power series in ¢ with coefficients of c" being *'7,, 2 m, or
*3p_ (n = 1,2,3). The responses, *'1,,, 17, and *3 7, are determined by equating the

like powers of ¢ as follows

¢! terms:
g & 0 07 Mm| [Au+ ﬂ/f, A1z Az || 'y f: 1(7)
2 77; +2/ 0 & 0™ ’7; + A Ay + '1152 Ay §2m p=12(7)
= 0 0 &)|®n A3 A A || 0

(5.14)



C’2 terms:

11, & 0 0 An““llf, Ay Az || M, 0
P2 00 &y 0 Rt Ay /122+)*1£,_ Ay 720, 1 =40

1, 0 0 & 7n A3 A3 Az || B, 0
(5.15)
C3 terms:
* 77; h O 0" ’7; Ap+ ’sz, Az Az || g \
a2l 00 &y 0 K2mpt4] Ay Ay + 112 Ay 72 ¢
/2 0 0 &5 *3 73 A3 A3 Ay || UL
’(5.16)

A0 o[22 (o)
+ 0 AL 0Rmglt={0
0

V"

0 0 03z

Equations (5.14)-(5.16) can be solved sequentially. Taking Laplace transforms of

equations (5.14), for zero initial conditions, one obtains

[M{m ()} = {F(s)}

with
5?4285+ Ay +Af 2 A3
[M]'": A 5242855+ Ay, ‘*‘lﬁz A3
A sP 42855+ A
31 A3 33 33 517
iy (s) Fi(s)
m@)}=1"m(s) and  {F(s)}={F(s)
13771 (s) 0
The solution for * 7,(s), *2 n,(s) and ™3 1,(s), from the above is,
{m(s)} = [H}{F(s)} (5.18)
where, the kernel transform matrix
(5.19)

[H] = [M]”

whose individual elements can be worked out to be



X Hl(l)(s) x H,(2)(S) x H}(B)(s)
[H]=| =H{" () 2HP(s) =HD(s)
X3 H](])(S) x3 Hl(z)(S) x3H1(3) (5)

THV(5) = (=Agsdyy + (57 + 2585 + Aoy + A )s? + 2553+ 433))/ D
H P (5) = (A3 Az = Apa (52 +28833+ A33))/ D

TH D (5) = (=A% + 2580 + Ay + 25 )+ Aplp;)/ D

2 H{D(s) = (Ags s, = Ay (s +25833+ A433))/ D

2H P (5) = (=Ay3As + (57 +25& + Ay, + Ay (5% + 2555 + A43))/ D
chHlm(-f) = (3o —(s? + 2581+ Ay +'1£, )A23)/ D

BHD(s) = (—(s% + 258y + A +Ai’2 VAz1 + Ay1432)/ D

SHP(8) = (Aphyy — (57 + 258, + Ly +A£)A35)/ D

SHD (8) = (~Aphy + (57 + 258 + Ay + A5 s® +25E 5 + A +5))/ D

(5.20)
with
D= (s* +25&, + Ay + Ay N* + 2858, +Apy + A5 )s™ + 25853 + A3)
= (8% +25E) + Ay + Ay VAgsdsy = Ay (5% + 2585, + Ay + A5 )25 (5.21)
= Ay A (® + 2583 + Agy) + Ay Ags Agy + AisAar A
Taking Laplace transform of the equation (5.15), similarly give
s+ 25& + Ay + Ay Az A3 ()| |0
ZoY s* 4258y + Ay + A, A 2, (s)p =40
A3 A3 st +2s83+ 25 || P (s)] (0
(5.22)
which yield
n,(s)=0
x2 7,(s)=0 (5.23)
B1(s)=0
which shows that the second order kernel is identically zero i.e.,
Thy (1,7, )="2hy (7,7, )="hy(11,7,) =0 (5.24)



In order to synthesise expressions for third order kemels, equations (5.16) can be written

as
1y & 0 07N An+ /1;', A A || M 9,(7)
Py +2 00 S 0 NTmeH| Ay Ap iy Ay 27y b=1g,(2)

B0 0 0 &f|®m A3 A3 Ass || s 0
(5.25)

where the following abbreviations have been used

g1(7) = =4 S} ()

g2(7) = =2} 1} (7)

(5.26)
Equations (5.25) are linear in 77; terms, similar to equations (5.14) and therefore the
solution in terms of Volterra operators as
M n3(r)="1H\[q,.9,]
2 n3(0)="H\[4,.4;] (5.27)
B 13(r)="H,[4;.4,]

that is

& H3[f1(f)’f_2 (0="H,[g;.9>]

*2 Hy[ £1(1), [2()]="2H,[4), 9, ] (5.28)
S Hy[£1(0). [2(D)="H[41,9:]

However, since 1 H;, * H, and ™3 H| are linear operators. one obtains

1 n3(0)="H\[g,,9,]
="H{V[g,+"H"[4,]

*2 ’73(T)=x2H1 (9),9,] (5.29)
="2H{[g,]+H{[g,]

B n3(2)="H,q,.9,]
= H{[g,}+H,”[4:]



Noting the abbreviations (5.26), the terms on the right hand side of the above equations
are individually expanded as
“H g =AY )
etc.
- P 5

In the above equations

X1 R

! 2
m= "1+ i

= H[ 0]+ 2 HO] )

:-_.r:Hl(l) rj‘l (T) + szl(Z)[fz (’l’)] (5.31)

="HY [fl(f)j + stl(z)[fz(r)]

Laplace transforms of equations (5.30) gives
X]H(“[Ql(slssz,%)] /'LN (X]X] \{Jl ~L11 +3 X]T]LPl -1,1,2 +3 X]Xl\},l-l 2,2 X]qu_,i -2, 22)
(5.32)

where, 1 ‘i’;i"j 'k‘”(sl ,§5,83) is the third order kemnel factor which has been defined

as

i q’élﬂj’k'l)(%sz’ss) == lex(i)(Sl +5; +S3)X'H1(j)(51) Jr'Hx(k)(sz) x'Hl(l)(%)
i=12;j=12;k=12;1=1.2 (5.33)

The third order kernel factors above, can be readily constructed, using equations from the

2
first order kernels ™ H‘(])(s), J”’H,(z)(s), 250 (s), X2H](2)(S)s BHD (5), “H{P (s).

Similarly, the Laplace transforms of other terms on the right hand side of equations (5.29)
can be worked out to be

X (2) N /xx 2“1,1,] XX 2"],1,2 X1 X2 2“'1,2,2 XXy 2-2,2,2
LH{P 10y (s1,55,53)) = Ay (V2R3 43 W43 BRRIEAN4 2222y

(hre N sxqgl-LL1 xxgl-11,2 xoxpg 11,22 | 5xg1-2,2,2
2HO)(51,52,83)] = 4, (P15 +3 glhl2 43 R TS MR TS

- -2,2,2
(2 X3 X 2~ ]11 XyXy 2- 112 XX 2 122 X2X2 \PZ 22
% HQy (51,50,59)] = A (F2Hy T 43 g 4390, )



x3 (D N -
PHU[Q1(51552,83)) = A (P W 43 W2 43 e @l-l22 o pl222y

x3 1r(2) N -

3Hl [Q2 (Sl,S2,S3 )] = R’bz (x3x2 lIJ32 L1l +3 X3X2ql32-1,],2 +3 X3xz‘i}32—l,2,2+x3xz \-I’32—2‘2’2)

(5.34)
In equations (5.34), the following third order kemel factors have been used in addition to

those defined in equation (5.33).

2P (51 5y,85) = = 2HO (5, + 5, +5;,)2H (57) 2HP (s5,) 2HD (s55)
2VPITIR) (5),5,,83) = — 2H (s, +35, +53) 1 H P (5,) THI (s,) H® (55)
I (51,55,55) = = BHI (s, +5, +53) 1 HY) (s1) MH® (s,) "HD (s5)
TR (51,50,53) = = SHO (5) 45, +5)2HO () 2HD (5,) 2HP (s5)

i=12;j=12;k=12;1=1.2 (5.35)

The Laplace transforms of the third order kemels (equations (5.28)), can now be

expressed as
x| N 1-1,1,1 -1l - -
1 H3 (S] ,52 ,33) —- R«bl (X‘XI ]_P3 y 3 X).X) \P; 11,2 Y 3 XX LP3] 1,2,2 +.X]X] LP31 2,2,2)

+ 12’2 (X]Xz \PBZ—L],] + 3 XXy \1]32—1,1,2 +3 X} X2 LIJ32—1,2,2+X].X'2 \},32'—2,2,2)

).‘2 H3 (S] , 52 ,53) = A‘Z (szl \'P;—LL] Y 3 X2X1 \P;-I,I.Z pt 3 XX \{;3]"'1,2,2 +X2X| \1131—2,2,2)

+Ag (X2X2 \P32—l,l,l +3 XXy \IJ32—1,1,2 +3 X2X2 ‘},32—],2,2+X212 \}132—2,2.2)

-~ - - -2,22
X3H3(51152,53)= ﬂ_z (x:m lij3] L1l +3 ‘“x“*l"; L2 | 3 x "P; 12,2  x3x \P31 22y
+ 2212 (X3X2 \IJ32-1,1,1 +3 X3X2 ‘{,32—1,],2 +3 X3X9 \{]32—1,2,2+X3X2 \1_32*2,2,2)

(5.36)

5.3 Measurement of Wiener Kernels

As stated in Chapters 3 and 4, measurement of individual Volterra kernels is not possible,
while equivalent Wiener kernels can be extracted from the measured response if the

excitation to the system is white and Gaussian. These Wiener kernels can then be used to

generate the Volterra kernels.



In the present case, the Wiener kemels of the nonlinear system are extracted by
application of white Gaussian forces f](r) and fz(r) , one at a time, i.e. first a white
Gaussian force f;(7) with variance A;, is applied at station 1, while keeping the force
at station 2, f,(r)= 0. The resulting responses *lp, 25 and *3 n are employed to
extract the direct, x; — x,; -(at station 1), Wiener kernels and the cross (x;-x, and x;-x3)
kernels. In the next instance, a white Gaussian force f,(r) with variance A,, is applied
at station 2, while keeping the force, f,(r) = 0. The system responses, in this instance,
are employed to extract the direct x,-coordinate Wiener kernels and the cross (x,-

X),X,-X3) kernels.

The system response, in terms of Wiener kernels, is now expressed, in the two individual

cases as -

f1(z) Gaussian white, with variance A and f—z(r) =0:

(=AW fi(2), O]=F W] /()]
2 ()= W[ /1(z), 0]=2W[\(2)] | (537)
B (r)="W[f(z), 0= W[/ (+)]

/2 (7) Gaussian white, with variance A, and f,(r)=0 :

()= W[O, ];2(7)]=X1 W[fz (f)]

2 (r)="2 W0, f(0)|=2 W] f2 ()] (5.38)

% 1(2)="W|0, f,(0)|= W] fo(D)]

In equations (5.37)-(5.38), the Wiener operators are

W] () W WO (W WU O HO L (e (5.39)
(with ¥ denoting x;, x, or x3  fori=1lor2)

and the individual operators are given in kernel form by



i

W1 (7)) = ;I"w,“')(rl)fi(r- 7))t
o o o ) _ _ ®
nwz(')[fi(r)]= f j”wé’)(rl,rz)_ﬁ(r—rl)f,.(r——rz)dt,drz—-A,- J.ng)(fz,‘fz)de

—-d‘o—oo

K;‘;'B(’)[f;(-[)]z I j J'Kw:gi)(‘[],fz,T3)_/-}(T—Tl)];-(‘[—‘[2)]}(z'—1'3) dTl d12d1—3

—00 —00 —a0

o oo
-3A; I I”wg')(r,,rz,rz)j—}(r—rl)drl dr,
-00-00
(5.40)

The relationship between the Volterra kemnels of equations (5.6) and the Wiener kemnels
above, is the same as written in the previous chapter (for a third order response
representation). These relationships are reproduced below.
Kh§i)(71:72>73)='{w§i) (71,75,73)

Khéi) (11,72 ):__xwg) (71,72)

f . : (5.41)
“h(r)="w? (z))+ wd (7))
Kh():KWo'*‘KWO(Z)
with
*ywlD (1) =—=34; j’ wi(1),7,,1,)dr
1(3) 1 3 152552 2
(5.42)

“Why (71) = —4; 'IK (')(Tlﬂl)dﬁ

Employing the Fourier transform relations and the property of the Dirac-Delta function,
8(w), given in the previous chapter by equations (4.46) and (4.47), the responses (5.37)

or (5.38) can be expressed as



“n(D)="Wo+ [*W(@)F, (@)’ do,

—00

-{ I J'KWz(i)(a’l’a’z)E(‘ol)E(a’z)ej(w'mZ)walda’z‘Ai rwz(i)(wzf‘a’z)da’zJ
|

”W3(i) (01, 0,,05)F, (o)) F(w, )F;(@;)e j(w'+mzm3)rdm1da’zdw3

g —

8

i
—00 —00

F o K being x;,x, orx; andi=1,22
(5.43)

A complex exponential filter, similar to the one described in previous chapters, has been

used for measurement of the individual Wiener kernel transforms. Referring to Fig. 5.2,
the output of the filter is

. o | _
20 (1) = [/ fi(v-1))d7,

-0
= F:*(a))e_-,wrl

and the ensemble averages of the outputs of the circuit, for x equal to x;,x,and xj are,

(5.44)

<K77(r)z(i)(r)>=" W, <F}'(a))>e'jw’ + J‘KWl(i) (@, )<F, (@, )1*_',-'(0))>e'jr(“""“’)dwl

+ [ J [ (@0, )<F—; (o)) F (@0)F (w)>e_jr(w'+w2—w) daydw,

-0 =0

A (F (@) IKWz(i)(wza‘wz)dwz]

+ [ | I IKW:a(i)(wl W, W3 )<F}(‘01 )F,(@,)F; (05 )F}‘(CU)>
e—jr(a)l +a)2+w3—(a) dw,dcozda)3

-34, ? ?KW ) (),0,,~0, )<F, (@, )Fi*(w}>€— Jjrien - w)dco]dcoz}

(5.45)



] B el @) | @0z (o)
fi(0) & F(0) Uninown i Onal OR £ ()29 (7)
Nonlinear System | *3 77(7)«>™3 71(/5)72 '& s (2)z? (7)

g% >

A

[een f,(z =z )dr;
o Z(i)(r)

Fig. 5.2 Scheme for evaluation of the first order direct and cross Wiener kernel

transforms, * Wl(i ),
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Since f;(r) is stationary Gaussian white noise with zero mean and variance 4, the
1°

Fourier transform, F;(@), is also a stationary Gaussian white nojse process and

employing the properties (ref. equation 3.30) of the ensemble averages of these products

transformed functions, equations (5.45) get reduced, after some algebra, to
(*n@)z" (@) = 4, W (@) (5.46)
Due to the equivalence of time and ensemble averages, the ensemble average

< “n(r)z® (r)> can also be written as,

("m0 @)= i 2T 00z (o

= (@) "n(a) (5.47)
Equation (5.46) and (5.47) give
4," W (@)= F (@) "n(0) (5.48)

from which the expression for the first order Wiener kernel transform is obtained as

"Wlf”(w) = F’;(m) ) /Ai (5.49)

Since x takes values x;,x,,x; and 7 takes values 1 and 2 the direct kernel transforms
W (w), 2 (0) and the cross kemel transforms ! P (), 2w (),
*3 Wl(”(a)) *3 Wl(z)(co), can be extracted from the measured responses ! 7(®),
*2 n(w), ™ n(w) and the applied force (Fj(w) with variance A or F,(w) with

variance A 5 ), through equation (5.49).

For measurement of the third order kernel transform, a circuit involving three exponential
delay filters as shown in Fig. 5.3 is considered. The output, z(i)(z’), of the exponential
filters is
. o - © . - < -
D)= [~/ f.(r = 1))dr, [ /9272 fi(r—1y)dry [e7935 fi(z — 73)drs
—00 -0 - .

= F(~0))Fy(~0)F (-3)e /102 (5.50)



(1) n(w) ()2 P (7)

—

fim o F(w) | Unknown 2 n(1)e™2 n(w)

»®- 2 n(z)z? (7)
Non-Linear System| ™3 77(7)>™ n(w) 3 p(2)z D (1)

s '

[o0]

Jertorn e =<,

—o0

h 4

o]

.“e—jwzrzf;i(f‘Tz)dfz- ()

-0

o
—>| [T/ fi(r~13)d1s

—0

Fig. 5.3 Scheme for evaluation of the third order direct and cross Wiener kernel

transforms, *W\" (@,0,0).
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The ensemble averages of the outputs of the circuit (Fig, 5.3) are

<x77(z.)z(i)(f)>=[Aiz[le(i)(ml)é-(_wz _03)81( o ~w3)r KW(')(G)7)5( —o, — (03)81( ) -w3)

K (i) (- — (1
+ W (@03)0(-0; - wy)e’ ™ “’2)’]]+[6AI,3 "W;)(a)},a)z,ah)]

(5.51)
The equivalence of time and ensemble averages gives
< n(z)z? (T)> = hm — f “n(r)z""(r)dr,
-T/2
= F (-0))F,(-0))F (~03) "n(a, + 0, + ;) (5.52)

Equations (5.51) and (5.52) give the expression for the measurement of the third order

Wiener kemnel transform as

. l — — i
KW3(1)(0)1 Wy, W3) = ;—;—[Fl (@, )F‘, (a)2)Fi*(co3) (0, + 0, +co3)}
i
} Y (5.53)
1 W@+ 03)+ W (03)8 (0, + @y)
64, + W (@3)8 () +wry)
Measurements are made for special trispectral kemel transforms with

W) =w, =@y =a. As stated in earlier chapters, these transforms being functions of

only one variable @, are easier to compute and interpret. For such trispectral kernel

transforms the expressions (5.53) reduce to

x| W(')(co w,0) = _6_;14_3_ {;.—it(w)}}x, 7Gw) |- _._Fxl u/l(i)(w)+x1 W|(i)(a))+xl W’|(i)(a)):’5(w)
. 1"

Xy W3(i)(a),a),a)) _ ____!_5_ {;—;*(w)}a x, n(w) |- __1___ FXz W'](i) (w)+xz Wl(i)(a))+13 pV](i) (w):lé'(w)
6A. i i~

X W3(i) (©,0,0) = - 1 5 [{F (G))F x3 77(3(0):' l:xs W(l)(w)+13 W(')(a))+x3 ", (i) (w)]5(w)
A 1

(5.54)



5.4 Parameter Estimation

The first order direct and cross Wiener kernel transforms "W] U )(a)) and the third order

direct and cross Special Trispectral Wiener kemel transforms W (w,0 @) are
3 b b

estimated using equations (5.49) and (5.54) respectively, from the measurements of

spectral component F(w) of the excitation force, its variance A, and the spectral

components " 7(@)," 7(3w) of the corresponding response. Subsequently, for a third

order representation of the system response, noting the equivalence between the Volterra
and Wiener kernels (equations 5.41 and 5.42), the first order Volterra kernel transforms

and the third order Special Trispectral Volterra kerne! transforms can be computed as

*H)(0,0,0)=" W (0,0,0)

le(i) (@)= W-l(i) (a))+"W‘((?) (@) (5.55)
where

. ® .
W (@)= _{0 W, (@00, o, (5.56)

The linear parameters can be obtained from the above estimates of the first order Volterra
kemels, 1 H'"(w), 2H" (@), “H" (@) H? (@), 2H? (@), *H? (@). Noting
the algebraic expressions (eqns.5.20, 5.21) of these kernel transforms, the linear stiffness
parameters of the bearings Aﬁl ,A’gz are estimated through a complex curve fitting routine
(Levy, 1959). In addition to the bearing stiffnesses, the damping ratios S11> 622> 633

and the mass ratios 4, y, are also obtained from the curve fit routine.

The nonlinear parameters are computed from the estimates of the Special Trispectral

Volterra kernels H;”(a),a),m), xlﬂgz)(a},w,a)), "ZH;l)(w,a),m), x2H§2)(a>,a),a)) R

x3 H;”(w,a),a)) ’ 131{;2)(&),&),@) . Noting that these kernel t’ransforms are

estimated by application of a single white Gaussian force at a time, the synthesised



expressions (5.36), for the third order Volterra kemnel transforms, also get reduced, in the

two individual cases, to

£, (7) Gaussian white, with variance A, and fz(r) =0 -

X H3 (Cl), CL), a)) = l{: (X)Xl LIJ3]"1,1,| ) + AZ (X]XZ \IJ32—1,1,1)
X3 H3 (Co,a),a)) = ,12! (121’1 LPBI—I,I,I) + /111:/2 (szz \I;32—],1,]) (5.57)

X3 I-]'3 (,0,0) = /{Z (szl 1_1/31—1,1,1)_*_ /12\/2 (X3x2 ‘{132—1’”)

fz (7) Gaussian white, with variance A2 and fl(r) =0 -

XIH (a) (4] a)) AI\ (.X]X] \_Ijl -2,2, 2) +/1 (Il.X'z LPZ—222)
X3 H3 (0,0,0) = ,l; (xle \IJ:; 2,2,2) + /‘LZVZ (xzxz q;32 2.2.2) (5.58)

x3H (w,0,0) = ,1 (IBX]LPI 222)+1N (x3x2q,2 222)

It is to be noted here, that application of two forces (individually) is required for
estimation of the linear cross-coupling terms. However, since no cross-coupling has been
included in the nonlinear terms in the present analysis, only two equations out of the set

of six expressions (5.57) and (5.58) are sufficient for the estimation of the two nonlinear

unknown parameters Zbl Abz (cross-coupled nonlinear parameters Ay, A3, 433, being

taken zero). Estimation of AZ /lg has been carried out here, using the first two equations

from the set (5.57). For these two equations, using equations (5.55), we have

1 x [x ) J N xxgl-lll
— 1G0) |- | O @)5(@) | = 2 (e
o4 [{F (w)}3 7 w)} A

+ Abt (X]Xz LP3 —],],1)

1 X5 vpr (1) N xxgl-11]
3 W, (m)a(m] _ Y (gt
o} o] 2] (o

+ /1:2' (X2X2 lP32—l,|,1)

(5.59)

. N N
The above equations are solved simultaneously for the nonlinear parameters Ab, and ,lbz :



5.5 Computer Simulation

The procedure is illustrated through numerical simulation of the response for the
nondimensional equations (5.3). The excitation forces are simulated through random
number generating subroutines and are normalised with respect to the maximum value of

Jf1(t) . A typical sample of the excitation is shown in Fig. 5.4 (a). The power spectrum of

the input averaged over an ensemble of 2000 force samples is shown in Fig.5.4 (b)

The shaft stiffness matrix for the simply supported system, carrying a centrally located
disc as (refer Fig. 5.1, for station numbering) is computed using Strength of Materials
Formulae (Childs, 1990)

k k k 1 0 -1

11 12 13 12E]
k21 k22 k23 - '““3-“ O 1 - 1 (5.60)
k3] k32 k33 ‘_1 ‘—1 2

which gives the nondimensionalised matrix as

Ay + g Ay A | OS+A) p 0 ~(0.5/ 1)
Ay Ay Ay A= 0 (0.5+45) py —(0.5/p,) | (5.61)
2«3] /132 2’33 —0.5 —'05 1

where 1, 1, are equal to the mass ratios 7, /m; and m, / my respectively. In the rotor
configuration shown in Fig.5.1, m; and m, are the masses effectively seen by the
sensors at the bearing ends and will be small in magnitude in comparison to m;.
However, for simplicity in numerical simulation the mass ratios m,; / my and m, / m; are
chosen to be each equal to 1.0. The values, of the individual elements of the above

lambda matrix, therefore become

Ay = Ay =0.5 A3 =1.0 Ay = Ay =0 (5.62)
113 = 123 - ""0.5 /%3] = 232 = "‘0.5

In order to illustrate the numerical results when shaft and bearing stiffness are both

equally significant numerically, the values of the linear bearing stiffness parameters are
taken as

L _ L _ 5.63
Ay =0.5 Ay, = 1.0 (5.63)
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Fig. 5.4(b)  Power-spectrum of the input force (averaged over 2000 samples).



For the above set of values of the linear parameters the estimation procedure is illustrated

for the following sets of the nonlinear parameters -

. N _ N _
Case 1: '11;, =0.1 /lbz =0.1

. N _ N _
Case 2; ’lb, =0.1 /lbz =(0.01

Damping is chosen as &, =&, =633 =001 in both the cases. The same set of
excitation as shown in Figs 5.4 (a), (b) is employed for the two cases. The governing
equations are then numerically solved through a standard fourth-order Runge-Kutta
subroutine, to obtain the responses ™ 5, *2 1 and 37 . These responses are fed as inputs
to the parameter estimation algorithm. The various first and higher order kemnels are

extracted from the responses and consequently parameter estimation is carried out. The

output consists of the linear stiffness parameters AL ,lﬁz , the damping ratios

$11>522- 33, the mass ratios 41, 4, and the nonlinear stiffness parameters /lg", /122' .

The estimated parameters are compared with those originally used for the simulation of

response.

Casel:

For the first set of values Aﬁ’l =016/ /lg =0.10, the nondimensional responses 7,

"7 and ™75 numerically resulting from the force of Figs. 5.4 (a), (b), applied at

station 1, are shown in Figs. 5.5 (a), (b) and (c). (No force is applied at station 2). Their
corresponding power-spectra are shown in Figs.5.6 (a), (b) and (c). The critical
frequencies of the system can be noticed from these figures to exist at 0.097, 0.175 and
0.219 (cycles/7 ). These frequencies correspond to those obtained from the eigenvalue

solution of the linear nondimensional stiffness matrix described in equations 5.61-5.63

and can be called @;,®,,®;. It can also be noticed from the power-spectra of Figs. 5.6
(a),(b),(c) that the system nonlinearity is not apparently, equally displayed by responses
*'n, 27 and 3 7. The plot of 2 (Fig.5.6b) displays additional peaks at frequencies
0.263, 0.291, 0.341, 0.403, 0.491, 0.525 and 0.569 cycles/ 7, which can be identified as

(203 - @,), Bay), (203 - @), (20; +3), (@ + 0, +@3), (30;) and (20, + o)
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Fig. 5.5 Tvpical response samples: Case 1.
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Fig. 5.6 Power-spectra of the response (averaged over 2000 samples): Case 1



harmonics respectively. These harmonics are not distinctly, visible in the plots of "' g

(Fig. 5.6a) and 3 n (Fig. 5.6c). This is due to the fact that stations 1 and 3 being closer

the station of force application (station 1), the linear response levels, are higher at these
stations in comparison to that at station 2 and overlap the nonlinear contributions. Similar
response plots can be obtained by application of the force at station 2, while keeping the

force at station 1 equal to zero.

The applied force and resultant response at the three stations are employed in equations
(5.49) and (5.55) to extract the first order Volterra kernel transforms, ¥ l(i) (@) shown in

Figs.5.7(a-f). These kernels show the three critical frequencies of the system, mentioned
above. The errors in these estimated kernels are given in Figs. 5.8 (a)-(f). The errors are
computed by comparing the estimated kernel transforms with those obtained from the
exact analytical expressions (5.20). The errors are high in the vicinity of the fundamental
frequencies, as in the cases of rotor configurations, discussed in the earlier chapters.
However, the errors are within 10% zone upto-a nondimensional frequency of 0.07

cycles/ T . Parameter estimation is therefore carried out in this frequency range.

The third order kemel factors ¥ W' (0, 0,0), 29I (0,0,0),
X9x] \P31-l,1,1 (CU,CU,&)), X9X9 \P32-l,l,l ((0,&),0)) , X3 ?’;“l‘l‘l(w,w,w) and
32 2~ () w,0) estimated from the first order kemel transforms, are shown in
Figs.5.9 (a)-(f). However, in the present case, the last two factors, " ‘}’3"”’1(0), ®,")

and *3*2 ‘1132'1"" (»,w,w) are not required since the nonlinear parameter estimation can

be carried out from the first two equations only, from the set of equations (5.57).

1
The third order measured kernel transforms “H 3“)(0),60,(0), ’2H§ (@,0,w) and

“H §” (w,w,w), extracted from the measurements of the force and response, in
accordance with equations (5.54), are shown in Figs. 5.10 (a)-(c). As before, while the
first order kernel transforms are estimated in the entire available frequency range 0.0 -

1.0, the third order kernel transforms, involving a 3w factor, have to be restricted to one-
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Fig. 5.8
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third of this frequency zone (i.e. 0.0 - 0.33). It can be observed, from the figures, that

while the measured third order kernel transforms are reasonably accurate in showing the

harmonic at @,;3/3 (at nondimensional frequencies = 0.032, 0.058 and 0.073
cycles/ 7 ), the identification of the harmonic at @), 3 (at nondimensional frequencies =
0.097, 0.175, 0.219 cycles/7) is weak, due to higher statistical errors, mentioned earlier.

- . . N N
The estimation of nonlinear parameters lb, and Abz , from these kemnel transforms, is

therefore restricted to the frequency zone of 0.0 - 0.07.

The estimates of the nonlinear parameter /IZ and /livz , obtained in accordance with the

relationships (5.59), are shown in Figs. 5.11 (a)-(b). A fourth order polynomial curve
regressed through the estimates of these nonlinear parameters , over the frequency range,

is also shown in these figures. The mean values of the estimates are found to be

N _ N _
Ab, 0.09 and Ab2 0.12

(The exact values of the above nonlinear parameters are those chosen for response

simulation, that is, Ag’ = Ay =0.10).

The linear parameters have been estimated from the first order kemel transforms of
Figs.5.7 (a)-(f), using a complex curve fitting routine (Levy, 1959). The estimates are

p =0956  uy=0917
A, =0.487 A, =0918

&1 =& =433 =0.011

Case 2
In the case study 1, the values of the nonlinear parameters, 12/ , ,?.gz -were kept identical

(=0.10), in response simulation. As the next case, dissimilar values 1: =0.1, /Lg =0.01,

of these parameters, are chosen for response simulation and their subsequent estimation
from the simulated response. The linear parameters are the same as in Case 1 and the

forcing function is the same as shown in Fig. 5.4 (a),(b). The results obtained are shown

in the figures listed below.
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The estimates computed in this case are

N _ N B
/'lbl =0.106 lbz 0:04
and
/Ul =0.99 /-12 =095

A, =049 A, =095
& =632 =433 =0.013

Figs. 5.12 (2).(b),(c)
Figs. 5.13 (a),(b),(c)

Figs. 5.14 (a-f)

Figs. 5.15 (a-f)

Figs. 5.16 (a-c)

Figs. 5.17 (a),(b)

Reasonably good estimates can be seen to be obtained, in both the numerical cases

illustrated above. The accuracy lies within the 20% zone for the nonlinear parameters,

except Abz

N _in the second case. However, the order of the magnitude of the estimate is the

same as that of its exact value. It is to be noted that the response representation has been

restricted to third order kernels only, in this study. Also, the ensemble size has been

restricted to 2000. Increased sample size and/or increased ensemble size can be expected

to yield more accurate estimates.
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5.6 Remarks

The parameter estimation procedure, developed in the previous chapters for parameter
estimation in rigid rotors, has been extended to incorporate shaft flexibility, in this
chapter. This has served to illustrate, the general nature of the procedures adopted for
nonlinear parameter estimation. Relatively few numerical exercises have been carried
out, in this chapter. The accuracies of the estimates with various other nondimensional
parameters and measurement noise can be expected to follow trends similar to those in

the earlier chapters.



CHAPTER 6

EXPERIMENTAL INVESTIGATIONS

Experimental investigations have been carried out, in addition to the computer simulation
described in earlier chapters, for further illustration of the parameter estimation
procedures. The experimental studies have been carried out on an existing laboratory
rotor-rig. These studies are restricted, due to laboratory constraints, to the case of a rigid
rotor supported in ball bearings. For such a bearing, cross-coupling stiffness parameters
are negligible in comparison to the direct stiffness coefficients. The experimental rotor-
bearing system, if the shaft is rigid, corresponds to the single-degree-freedom system
considered in Chapter 3. The rotor-bearing system is set into vibrations by providing
white noise excitation at one of the bearing caps, Measurements for excitation force and
the resultant vibration response are made simultaneously at the point of force application
itself, i.e. at the bearing cap. The measured data is then processed in accordance with the
procedure described in Chapter 3, for linear and nonlinear parameter estimation. The
experimentation is carried out for various force excitation intensity levels. Variation in
the excitation force levels provides with different values of the non-dimensional
nonlinear parameter, A. The rig and the instrumentation are shown schematically in

Figure 6.1. A detailed description of the rig, instrumentation and results follows.

6.1 The Rig

The laboratory rig consists of a disc centrally mounted on a shaft supported in two
identical ball bearings. The shaft can be driven, if required, through a flexible coupling
by a motor. The disc has a mass of 0.815 Kg. The shaft is 0.16 m long with a diameter of
10 mm. The bearings are supported in pedestals, comprising of an upper cap and a lower
case. The pedestal is mounted on a steel base, which in turn is bolted to a foundation.

The bearings are SKF make with the following specifications -
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Ball bearing Type SKF 6200

Number of balls 6

Ball diameter 6 mm
Bere diameter 10 mm
Outer diameter 30 mm
Pitch diameter 20 mm

Inner ring ball race radius  3.09 mm
Outer ring ball race radius  3.09 mm

Allowable pre-load 0-2 um
Rotor mass per bearing 0.41 kg

Figure 6.2 shows the overall experimental arrangement. The rotor-bearing is excited
through the bearing cap by a electro-dynamic shaker. The shaker is mounted on a
specially designed rigid frame. Two-plane rigid-rotor balancing is carried out before

proceeding with the experiments.

6.2 Instrumentation

White noise excitation is generated by a random signal generator (Briiel & Kjaer make,

Type 1405). This noise generator has a frequency range of 20Hz to 100 kHz and can

provide a maximum uniform spectral density of 1074 v2/Hz upto 50 kHz frequency. The
white noise signal is amplified through a power amplifier and fed to the shaker. The
Power Amplifier is Briiel & Kjaer make, Type 2706 with a frequency range of 10 Hz to
20 kHz, with a signal distortion limit of approximately 0.2%. The electrodynamic shaker
is also of Briiel & Kjaer make, with a frequency range of 0 - 18 kHz and a peak-to-peak
force rating ranging upto 10 N and a maximum displacement of 6 mm. The excitation
force and response are measured by an impedance head attached between the shaker and
the bearing cap. The close up of the rig including the shaker and the impedance head is
shown in Figure 6.3. The impedance head is Briiel & Kjaer make, Type 8001 with

accelerometer sensitivity of 3 pC/ ms 2, force gauge sensitivity of 370 pC/N and 1-



Fig. 6.2 Overall experimental arrangement.

Close-up of the shaker and impedance head.



10,000 Hz frequency range. The signals from the impedance head is fed to a computer
through standard Briiel & Kjaer, Type 2635, charge amplifiers.

6.3 Data Acquisition

The analog signals from impedance head through charge amplifier are digitized in the
computer through a 32 bit Analog to Digital conversion card. The data is acquired into
the computer through a virtual instrumentation (VI) program using LabVIEW software.
The data acquisition card (National Instruments, Texas; Type-AT-MIO-16E-10) has a 12
bit resolution and a maximum sampling rate of 100 kS/s. The front panel and back panel
of the VI program developed in LabVIEW for the data acquisition are shown in Figures
6.4(a) and 6.4(b). The data for the excitation force and the vibration response is acquired
at 4096 number of equispaced time (f) instants, for a total period of 0.32 sec. Such a set
of data is treated as a set of force and response samples. A total of 2000 such samples are
collected for both the force excitation and the acceleration response and treated as an
ensemble of force and response samples. Statistical averaging is carried out over this

ensemble for further processing.

6.4 Case Studies

As mentioned earlier, experimental studies are carried out for various force excitation
intensity levels. These force intensity levels are set by choosing the spectral density level
on the white noise generator. The maximum force, F, .., obtained in a force sample, is
incorporated in the definition of the non-dimensional nonlinear parameter A (ref:
equation 3.3). For the same rotor-bearing configuration, different values of F,, provide
different values of A and the results obtained for the estimates can be compared in a

statistical context, as in Chapter 3.

Case 1:
As a first case the spectral density level on the white noise generator is set such that it

gives F,,. =3.27 N, as measured by the impedance head on the bearing cap. A typical

sample of the white noise excitation force is shown in Fig. 6.5 (a). The response in terms
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of displacement, is obtained through integration of the acceleration signal. The typical
sample of the displacement is shown in Fig. 6.5 (b). In order to check the noise level in
the measurements, all the instruments, including the electromagnetic shaker, were put on.
The gain of the power amplifier between the signal generator and the shaker was adjusted
at the lowest level so as to have no excitation conditions. Typical signals recorded, from
the impedance head, under this condition, are shown in Figs. 6.6 (a) and (b). Comparison
of these with the force and response signals of Figs. 6.5 (a) and (b) respectively, shows
that the noise to signal ratio, in the extreme cases are 2.8% and 3.5% respectively. The
influence of measurement noise on the parameter estimation procedure was discussed in
Chapter 3 and the procedure was illustrated to be robust in the presence of 5% noise. The
present noise levels are rather small and it can be safely assumed that their influence on
the estimates will be insignificant. The power spectrum density of the excitation force is
obtained by averaging over the ensemble formed from 2000 individual samples force

signals. The power spectrum density for this case can be seen to be equal to

0.36 N2 / Hz (-4.436dB) from Fig. 6.7 (a). The power spectrum density of the
displacement response, similarly averaged over the ensemble is shown in Fig. 6.7 (b).
The frequency in these two plots ranges from 0 to 6400 Hz. The two peaks are observed
in Fig. 6.7 (b), a prominent one at a frequency equal to 1125 Hz and a minor one at a
frequency of 3375Hz. The predominant frequency of 1125 Hz, represents the
fundamental frequency of the system. (This was confirmed separately also, through
repeated rap-tests, using an impact-hammer.) The minor peak at 3375 Hz suggests the
presence of a nonlinearity in the system which can be approximated by a cubic function.
That the system nonlinearity is of cubic type was further confirmed by applying a
harmonic force on the system, through the Signal Generator, instead of a random white
noise. A sweep test with harmonic excitation was performed and the response was noted.
It was observed that along with a prominent peak corresponding to the harmonic
excitation frequency, the plot of the response contains a minor peak at the 3" multiple of

the harmonic excitation frequency. This observation is displayed in the series of Figures

6.8 (a)-(f).
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Fig. 6.6(a)  Typical sample of noise level in input-force measurement.
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The white noise excitation and the response measurements are employed to construct th
e

first order Volterra kernel transform H(w), through use of equations (3.34) and (3 2.
(3.43). The first order Volterra kernel transform IH, (a))l, thus obtained is shown in Fig
6.9. The algebraic form of H, (@) from equation (3.12) is

]

. .
ma” + jew+ k

Hi(w)
6.1)

l/\m

(mj Cwh)+ j2§2;)‘(4;n
The linear purameters @, and & are estimated from H,(®). The natural frequency has
been readily identified as

w, 11215 Hz 7068.58 rad/s

The estimate of damping, using a least square fit of the curve of Fig. 6.9 with equation
(6.1), 1s found to be

£ 0.008.

The third order kernel factor Wy(@,@.@) is synthesised from the first order Volterra
kernel treform M (@) of Fig: 6.9, in accordance with equation (3.20). The absolute
values of Wy (w,w,w) and /(w,w,@)are shown in Fig. 6.10 (a), (b). As in the case of
the computer simulation of Chapter 3, it can be observed, from the Figs. 6.10 (a),(b) that
while the measured third order kernel transform H,(@,®,®) is reasonably accurate in
showing the harmonic at @, /3 (=375 Hz) , the identification of the harmonic at
@, (- 1125 Hz) is weak. Improvement in these plots can be expected if the number of

samples in the ensemble, over which averaging is carried out, is increased. In the present
study, however, due to data storage limitations in the computer, the number of samples in
the ensemble has been restricted to 2000. The estimation of A, from these kemnel

transforms. is therefore restricted to the frequency zone of 0-1000 Hz. The nonlinear

stiffness k" is obtained from the plots of ¥;(w,0,0) and Hj (@,,), by employing

equation (3.44). The estimate of & N , thus obtained is plotted in Fig. 6.11. A fourth order
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polynomial curve regressed through the estimates of k" over the frequency range, is

also shown in Fig. 6.11. The mean value of the estimates of k" is found to be 2.99 x
20 .

102 N/m3. Assuming that both the bearings are identical and act parallely, the

nonlinear stiffness k" of each bearing can be written as 1.49 x 102° N/m>. The
corresponding value of the nondimensional nonlinear parameter A is calculated as

0.366.
The sign of k" can be readily identified as negative, from the discussion of Section

3.6.6, and by observing the signs of @, /3 peaks of the real and imaginary components

of ¥3(w,w,w) and H;(w,w,®) shown in Figs. 6.12 and 6.13.

Case 2:

As the next case, the excitation force level is lowered down, such that F,,, = 1.1 N.

Typical samples of the excitation force and the displacement response are shown in

Figs.6.14 (a),(b) respectively. The power spectrum density of the excitation force (Fig.

6.15(a)) is 0.038 N2/Hz (-142dB), in this case. The power spectrum of the
displacement response, shown in Fig.6.15(b), as in Case 1, shows a major peak at 1125

Hz and a minor one at 3375 Hz. The first order Volterra kemel transform, H;(@) is
shown in Fig.6.16. The natural frequency identified from the plot of H (@) is
@, = 1125 Hz = 7068.58 rad/s

while damping has been estimated as
£ =0.0078.
The third order kernel factor, ¥;(w,®,®) and the third order Volterra kernel transform

H,(®,w,®) have been plotted in Fig. 6.17 (a) and 6.17 (b), respectively. The estimate

of the nonlinear stiffness, k” , is shown in Fig. 6.18. The mean value of kN for each

bearing, in this case, has been found to be 3.58 x 102° N/m>. It can be observed, -
through a comparison between the plots of Cases 1 and 2, that while the identification of

the @, /3 peak is sharper in H;(@,®, ®) if the excitation force level is }ower (Case 2),



Third order kemel factor (m/NHz) 4

Third order kemel factor (m/NHz)"4

Fig. 6.12

2€-029

1E-029

-1E-029 -

0 200 400 600 1000
Frequency (Hz)
(a) Real component.
4E-029
-2E-029 |-
0 20 400 600 1000

Frequency (Hz)

(b) Imaginary component.

Estimate of third order kernel factor ¥; (@, ®,®).



2E-009
1.5E-009
1E-008
5E-010

-SE-010
-1E-009
-1.5E-008
-2E-008

RARAS RARAS RARRE RRRS

Trhird order kernel transform (m/N"3 Hz*4)
o

o

(a) Real component,

1E-008 f
5E-010 |

BE-010 |
-1E-008
-1.5E-008
-2E-008
-2.5E-009

AARAARRSARE RARES RRRRS RESS

T

Third order kernel transform (m/N"3 Hz"4)

Frequency (Hz)

(b) Imaginary component.

Fig. 6.13

Estimate of the third order kernel transform, H3 (@, @, ®) .



MWM
'ﬂﬂ h,qga V M 'M'ff

.2 03

g‘“'*w 7‘“\ ww “*ﬂ“‘

Time (5)

Force (N)

Fig. 6.14(a) Typical sample of the input force: Case2

- —
- b i W
: - WWs lﬂ “NWWW““M (!

Fig. 6.14(b)  Typical sample of the response: Case2



50

B
——

Auto-Power Spectrum, (dB)
B o
f T

PRSP |

10 100 1000
Frequency (Hz)

Fig. 6.15(a) Power spectrum of the input force: Case 2

Auto-Power Spectrum (dB)

: - , ,
0 1000 2000 3000 4000 5000 6000
Frequency (Hz)

Fig. 6.15(b) Power spectrum of the response: Case 2



First order kernel transform, H1 (dB)

L5 . il

1 10 : 100 1000
Frequency (Hz)

Fig. 6.16 Estimate of first order kernel transform, H;(w): Case 2



-260
g 270
i) -
5 C
T 280 |
& C
’g C

290 =
& '
S i
5 300 -
= C
E sw0f

10 100 1000
Frequency (Hz)

(a) Estimate of W5 (0,0, ®)

60
g [
~ =70 u
E g
g L
Eosf
- -
g 3
£ wF
lo- =
ks X
3 -
2 100
£ i

10 100 1000
Frequency (Hz)

(b)  Estimate of H;(w,0,w)

Fig. 6.17 Third order estimates: Case2




230

ul

o
“ﬂ"- "i.’ﬂl’d‘.'lf‘ﬁawwn ALY nﬁw

Estimated nonlinear parameter (dB)

200 400 600 800 1000
Frequency (Hz)

Fig. 6.18 Estimate of the nonlinear parameter, kY Case2.



the estimate of the nonlinear parameter, kY , shows better uniformity over the frequency
range for a higher excitation force level (Case 1). The corresponding value of the

nondimensional nonlinear parameter A is calculated in this case as 0.114.

Case 3:
As a third case, the excitation force level is lowered down still further, such that F_ ., =

0.288 N. Figs.6.19 (a),(b) respectively shows typical samples of the excitation force and
the displacement response. The power spectrum density of the excitation force

(Fig. 6.20(a)) is 0.003 N 2/Hz (-25.68dB), in this case. The power spectrum of the
displacement response is shown in Fig.6.20 (b), while the first order Volterra kernel

transform, H,(®) is shown in Fig.6.21. The natural frequency identified from the plot of
H(®) is
o, =1128 Hz = 7068.58 rad/s

while damping has been estimated as
£ =0.0079.

The third order kernel factor, W3 (@, ®,®) and the third order Volterra kernel transform
H,(w,®,w) have been plotted in Fig. 6.22 (a) and 6.22 (b), respectively. The estimate

of the nonlinear stiffness, kN , is shown in Fig. 6.23. The mean value of kY for each

bearing, in this case, has been found to be 9.50 x 102° N/m?>. The corresponding value

of the nondimensional nonlinear parameter A is calculated in this case as 0.0199.

As in the first two cases, the trends observed in this case seem to be similar, that while

the identification of the @, /3 peak is sharper in H;(w,0,) if the excitation force

level is low, the estimate of the nonlinear parameter, 2 , shows better uniformity over
the frequency range for a higher excitation force level. Similar observations were made in
Chapter 3, during the computer simulation of the procedure. The computer simulation
was carried out for three values of the nondimensional parameter, 4 (1.0, 0.1 and 0.01),

and the accuracy of the estimates was seen t0 be the best in the case of 4 = 1.0. The
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values of the nondimensional nonlinearity parameter, A, in the three cases during

experimental investigations have been 0.366, 0.114 and 0.0199 and the mean values of
the estimates of the nonlinear stiffness k" in the three cases have been 2.99 x
102 N/m? ,7.16 x 102 N/m? and 19.0 x 102 N/m3, respectively. The order of the

nonlinearity of k" can be concluded to be as 10%° N/m? from the three results, while
on the basis of the computer simulation results of Chapter 3 and the uniformity of the
estimates over a frequency range in the experimental investigations, the correct
magnitude appears to be one in the range suggested by the first two values (1.49, 3.58)
rather than the third (9.50). The major source of error, apart from experimental noise, as
mentioned in Chapter 3, is that the estimation procedure is restricted to kemels up to the
third order only, in order to keep the computations to a manageable level. Inclusion of
higher order kernels (5™., 7™ order) in the response representation can be expected to
improve the accuracy of the estimates at increased computational effort. Another source

of inaccuracy in the estimates is the finite length of samples and the ensemble size.

6.5 Validation

An independent check is carried out to validate the estimates of the nonlinear stiffness.
This check is based on the analytical formulations of Harris (1984) and Ragulskis et al.
(1974), which treat the bearing in isolation of the shaft and employ the Hertzian contact

theory.

Referring to Fig.6.24, the total elastic force at the points of contact of the ith ball with the

inner and outer races is expressed as

F, =K,(g+xcosn, + ysinn,)*? (62)

and its projection along the line of action of the applied force is

F, =K, (g+xcos7, + ysin7,)** cos7, (6.3)

where g is the radial preload or preclearance between the ball and the races and x and y
are the displacements of the moving ring in the direction of the radial load and

perpendicular to the direction of the radial load respectively. 7, is the angle between the



Figure 6.24 Schematic diagram of a loaded bearing



lines of action of the radial load (direction of displacement of the moving ring) and the

radius passing through the center of the ith ball. X, is a coefficient of proportionality
depending on the geometric and material properties of the bearing. The value of X, , for

the test bearing is estimated by the method suggested by Harris (1984) as 2.82 x 10°

N/mm’~ .

The total elastic force in the direction of the applied force is

F= Z F, 6.4

1=]

where 7 is the total number of balls in the bearing.

Using the condition of zero elastic force in the direction perpendicular to the elastic load,

the deformation, y, perpendicular to the radial force line is expressed as

y= [g+xcos(n)I**sin (1,)/ Y [g+xcos(n,)]"* sin’ (7,) (6.5)
1=1 1=

Equations (6.3) and (6.5) are used in equation (6.4) and the bearing stiffness is

determined as a function of the deformation x as

k(x) = OF /& (6.6)

It can be seen that the bearing stiffness is critically dependent on the preloading, g, of the
balls. While the manufacturer, may, at times, provide the preload range, the exact value
of the preloading of the bearing balls in the shaft-casing assembly, especially during
operations which have involved wear and tear, would be difficult to determine. The
stiffness of the test bearing is plotted in Fig. 6.25 as a function of the radial deformation,

x, for various allowable preload values, g.

The same experimental rotor-bearing set-up was employed by Tiwari (1995), for linear
and nonlinear parameter estimation. He adopted a Markov process approach and modeled
the governing equations of the system into a Fokker-Planck equation. No external
excitation was given to the system and the random disturbances during the rotation of the

shaft, caused due to imperfections and deterioration of the rolling surfaces as well as
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from other random sources, like inaccuracies in alignment etc., were approximated in an
engineering sense as white and Gaussian. An exact solution of the Fokker-Planck
equation was obtained, in terms of the probability density functions of the response, a
curve fitting algorithm was developed to process the solution for parameter estimation.
The results obtained by Tiwari (1995) along with those from the present procedure are
also plotted in Fig. 6.25. This comparison is also listed in Table 6.1. The expressions for
the theoretical stiffness in Table 6.1 have been obtained by curve fitting the stiffness

values obtained from equation (6.6), through a quadratic in x.

Table 6.1 Comparison of bearing stiffness parameters
Hertzian Contact Theory Tiwari Present Study
(isolated bearing) (1995)
Preload (microns) Case 1 Case2 | Case3
02 | 03 | 04 | 05 | 06
roavimy | 12.0 | 147 | 169 | 18.9 | 20.8 22.3 10.0 10.0 10.3
£ v’y | -40.1 | -21.8 | -14.2 [ -10.27| -6.1 -85.0 -149.0 -358.0 | -950.0

* EN/ m = exa—Newton/ m3 = 1018 Newton/ m3

6.6 Remarks

A good resemblance can be observed between the results obtained in the present study
. and those obtained by Tiwari and the theoretically possible values. While there is
variation in the exact magnitude of the estimates, the order of the magnitudes is

practically identical. This serves to illustrate the correctness of the experimental exercise

and the practical application aspects of the estimation procedures.



CHAPTER 7

CONCLUSION

The present study has concerned itself with the inverse problem of parameter estimation
in nonlinear rotor bearing systems. Volterra and Wiener theories of nonlinear analysis
have been employed as the theoretical platforms for analytical development of
procedures. A frequency domain approach has been adopted and nonlinear response of
the system is expressed through first and higher order Volterra and Wiener kernel
transforms. The procedure involves extraction of Wiener kernels from measurements of
the applied white noise (broadband in practice) excitation and the resultant response of
the systems. The Wiener kernels are transformed to Volterra kernels, which are then
processed for parameter estimation. The following rotor systems were considered

@) Rigid Rotor in bearings without cross-coupling

(11)  Rigid Rotor in bearings with cross-coupling

@iii)  Flexible Rotor

The procedure was developed in stepé —the first rotor configuration mentioned above,
was treated as a single-degree-freedom-system; the next two cases involved more than
one degrees of freedom, where the cross-kemel concept was developed through Laplace
transforms. The procedures have been extensively illustrated through numerical

simulation. Reasonably good estimates have been obtained for both — linear and

nonlinear stiffness parameters.

One major approximation in the present study was the restriction of response
representation, to include kernels upto the third order only. This has been done in order to
keep the algebra at a manageable level. The accuracy of estimates is related to the
accuracy of response representation through kemels upto third order. The check, in the
present study is carried out by performing numerical simulation for various values of the
nondimensional nonlinear parameters. This nondimensional nonlinear parameter includes
the linear stiffness and force magnitude terms, in addition to the nonlinear stiffness terms.
The nonlinear parameters were found to be estimated within the correct order of the

magnitudes of their exact values, though the accuracy of the values vary with the values



of the nondimensional parameters chosen for computer simulation. The present study can
be usefully employed to design experiments to choose appropriate excitation force levels
for an expected set of values of the stiffness parameters. However, it would be
worthwhile, as a future exercise, to the extend the procedure to include kernels of higher
order. This can be done for a single-degree-freedom-system, without a great deal of
additional algebra. However, for systems, with more than one degree of freedom, it

would help to first develop some generic forms for response and kernel expression.

Despite the fact that the expressions look formidable with Volterra and Wiener series
(this would be the case, anyway, for a nonlinear analysis) the computer implementation
of the algorithms is rather simple and quick. The ensemble size of the force and response
samples, in the present study, is kept at 2000, due to data storage limitations of the
computer (A large amount of data was to be stored and retained in the computer, during
the entire course of the study). The accuracy of the estimated first order kernel transforms
was checked and the parameter estimation was restricted to a frequency range, upto
which the errors were low. An attempt can be made, as a future exercise to work with a
larger ensemble size to improve the accuracy and thereby also increase the usable

frequency range for parameter estimation,

The analytical development, in the present study, has been carried out for cubic form of
nonlinearities. However, the procedures can deal with any general polynomial form of
nonlinearity. Damping was treated to be linear during this entire exercise. Damping
nonlinearity can be incorporated in the analysis, though with increased algebraic effort.
The accuracy of the nonlinear damping estimates, with the present form of response

representation and the sample and ensemble specifications, can be discussed and

reviewed only after such a study is made.

The present study also attempted to implement the algorithms developed on a laboratory
rotor-rig. The study was carried out with the existing facilities and constraints. The
results were satisfactory and further strengthened the applicability of the procedures.
However, the experimental study was restricted to ball bearings. Further experimental
work needs to carry out on rotors in fluid film bearings, in order to fully investigate the

utility of the procedures developed during the course of this study.
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